岗位代码: 10101006303 (数学)

教参《新编高等数学》,大连:大连理工大学出版社;

ISBN: 978-7-5685-3140-5.

试教内容: 一、微分的定义及几何意义(P48-P49)

$$(7) y = \operatorname{arccot} \frac{x}{1 + \sqrt{1 - x^2}}$$

$$(8) y = \arcsin \sqrt{\sin x}$$

(9)
$$y = \ln(\cos^2 x + \sqrt{1 + \cos^4 x})$$

$$(10)y = \sec^3 e^{2x}$$

$$(11)y = x^{2x} + (2x)^{\sqrt{x}}$$

$$(12)y = x^{\frac{1}{x}}(x > 0)$$

- 2. 设函数 y=y(x)由方程 $y^2+2\ln y=x^4$ 所确定,求 $\frac{dy}{dx}$.
- 3. 设曲线方程为 $e^{xy} 2x y = 3$,求此曲线在纵坐标为 y = 0 的点处的切线方程.

第四节 函数的微分

导数表示函数相对于自变量的变化快慢程度. 在实际中还会遇到与此相关的另一类问题: 当自变量作微小变化时,要求计算相应的函数的改变量 Δy . 可是由于 Δy 的表达式往往很复 杂,因此计算函数 y=f(x)的改变量 Δy 的精确值就很困难,而且实际应用中并不需要它的精 确值. 在保证一定精确度的情况下,只要计算出 Δy 的近似值即可,由此引出微分学中的另一 个基本概念——函数的微分.

、微分的定义及几何意义

1. 微分的定义

设正方形薄片边长为 x_0 ,受热后边长增加 Δx ,如图 2-6 所示,那么面积y相应的增量 Δy $= (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2.$

上式中, Δy 由两部分组成,第一部分 $2x_0 \Delta x$ 是 Δx 的线性函数; 第二部分 $(\Delta x)^2$ 是 Δx 的高阶无穷小. 当 $|\Delta x|$ 很小时, $(\Delta x)^2$ 可以忽 略不计,面积 y 的增量 Δy 可以近似地用 $2x_0 \Delta x$ 来代替,即 $\Delta y \approx$ $2x_0 \Delta x$.

由于面积 $y=x^2$, $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=x_0}=2x_0$, 即 $f'(x_0)=2x_0$, 所以 $\Delta y \approx$ $f'(x_0)\Delta x$.且这个结论具有一般性.

设函数 y = f(x) 在点 x_0 处可导,且 $f'(x_0) \neq 0$ (我们不考虑

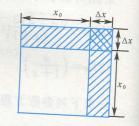


图 2-6

 $f'(x_0)=0$ 的特殊情形),即 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) \neq 0$,根据函数的极限与无穷小的关系,得 $\frac{\Delta y}{\Delta x} = \frac{1}{2}$ $f'(x_0) + \alpha$,其中 α 是 $\Delta x \rightarrow 0$ 时的无穷小. 于是

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot \Delta x$$

其中 $,f'(x_0)$ · Δx 是与 Δx 同阶的无穷小; α · Δx 是较 Δx 高阶的无穷小.

在函数的增量 Δy 中,起主要作用的是 $f'(x_0) \cdot \Delta x$,它与 Δy 仅相差一个较 Δx 高阶的无 穷小. 因此,当 $|\Delta x|$ 很小时,就可以用 $f'(x_0)$ • Δx 近似代替 Δy . 即

$$\Delta y \approx f'(x_0) \cdot \Delta x$$

我们把函数增量的线性部分 $f'(x_0) \cdot \Delta x$ 叫作函数在点 x_0 处的微分.

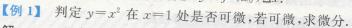
定义 1 若函数 y=f(x) 在点 x_0 的某邻域内有定义,且在 x_0 处具有导数 $f'(x_0)$, x 在该

微分的概念

邻域内点x。处的增量为 Δx ,相应的函数增量为 Δy ,若 $\Delta y = f'(x_0)\Delta x +$ $o(\Delta x)$,则称函数 y=f(x)在点 x_0 处可微,且称 $f'(x_0)$ dx 为函数 y=f(x)在点 x_0 处的微分,记作 $dy|_{x=x_0}$,即 $dy|_{x=x_0} = f'(x_0)\Delta x$.

理论上可以证明:

函数 f(x) 在 x_0 可微的充分必要条件是函数 f(x) 在点 x_0 可导,且当 f(x)在点 x_0 可微时,其微分一定是 $dy = f'(x_0)\Delta x$.



$$\mathbf{M} \quad \Delta y = (1 + \Delta x)^2 - 1^2 = 2\Delta x + (\Delta x)^2, y'|_{x=1} = 2x|_{x=1} = 2$$

所以
$$\lim_{\Delta x \to 0} \frac{\Delta y - y'|_{x=1} \Delta x}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\Delta x + (\Delta x)^2 - 2\Delta x}{\Delta x} = \lim_{\Delta x \to 0} \Delta x = 0$$

所以函数 $y=x^2$ 在 x=1 处可微,且在 x=1 处的微分为 $dy|_{x=1}=2\Delta x$.

函数 y=f(x) 在任意点 x 的微分,称为函数的微分,记为 dy 或 df(x).有

$$\mathrm{d}y = f'(x) \cdot \Delta x$$

若 y=x,则 $\mathrm{d}y=\mathrm{d}x=(x)'\cdot\Delta x=\Delta x$.

这说明,自变量的微分等于自变量的增量.于是函数 y=f(x)的微分又可记作

$$dy = f'(x) dx \neq dy = y' dx$$

从而有

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x).$$

也就是说函数的微分 dy 与自变量的微分 dx 之商等于该函数的导数,因此,导数也叫"微商".

【例 2】 求函数 $y=x^2$, 当 x=2, $\Delta x=0$. 02 时的微分.

解 先求函数在任意点 x 的微分:

$$\mathrm{d}y = (x^2)' \cdot \Delta x = 2x\Delta x$$

将 x=2, $\Delta x=0$. 02 代入上式, 得

$$\frac{\mathrm{d}y}{\int_{\Delta x=0.02}^{x=2}} = 2x\Delta x \Big|_{\substack{x=2\\ \Delta x=0.02}} = 2 \times 2 \times 0.02 = 0.08$$

【例 3】 求 $y = \sin(2x+1)$ 的微分 dy.

M $dy = [\sin(2x+1)]'dx = 2\cos(2x+1)dx$.

2. 微分的几何意义

为了对微分有一个比较直观的了解,我们再来说明微分的几何意义.

在直角坐标系中,函数 y=f(x) 的图像是一条曲线,对于某 一固定的值 x_0 ,曲线上有一个确定点 $M(x_0,y_0)$ 与之对应,当自变 量x有微小改变量 Δx 时,就得到曲线上另一点 $N(x_0 + \Delta x)$ y₀+Δy),由图 2-7 可知

$$MQ = \Delta x, QN = \Delta y$$

过点 M 作曲线的切线 MT, 其倾角为 α , 则 $QP = MQ \cdot \tan \alpha$ \overline{o} $=\Delta x \cdot f'(x_0)$, $\mathbb{P} dy = QP$.

由此可知,微分 $dy=f'(x_0)\Delta x$ 是当x 有改变量 Δx 时,曲线 y=f(x)在点 (x_0,y_0) 处的切线的纵坐标的改变量. 用 dy 近似代替 Δy ,就是用点 $M(x_0,y_0)$ 处 的切线的纵坐标的改变量 QP 近似代替曲线 y=f(x) 的纵坐标的改变量 QN,并且有 $|\Delta y-$ |dy| = PN.

