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Optimized Multi-Agent Formation Control Based on
an Identifier–Actor–Critic Reinforcement

Learning Algorithm
Guoxing Wen , C. L. Philip Chen , Fellow, IEEE, Jun Feng, and Ning Zhou

Abstract—The paper proposes an optimized leader–follower for-
mation control for the multi-agent systems with unknown nonlin-
ear dynamics. Usually, optimal control is designed based on the
solution of the Hamilton–Jacobi–Bellman equation, but it is very
difficult to solve the equation because of the unknown dynamic
and inherent nonlinearity. Specifically, to multi-agent systems, it
will become more complicated owing to the state coupling prob-
lem in control design. In order to achieve the optimized control,
the reinforcement learning algorithm of the identifier–actor–critic
architecture is implemented based on fuzzy logic system (FLS) ap-
proximators. The identifier is designed for estimating the unknown
multi-agent dynamics; the actor and critic FLSs are constructed
for executing control behavior and evaluating control performance,
respectively. According to Lyapunov stability theory, it is proven
that the desired optimizing performance can be arrived. Finally,
a simulation example is carried out to further demonstrate the
effectiveness of the proposed control approach.

Index Terms—Fuzzy logic systems (FLSs), identifier–actor–critic
architecture, multi-agent formation, optimized formation control,
reinforcement learning (RL).
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I. INTRODUCTION

IN THE multi-agent cooperation community, formation con-
trol is one of the most interesting and attractive research

topics because of its broad applications, such as cooperative con-
trol of unmanned aerial vehicles, satellite clusters, autonomous
underwater vehicles, and mobile sensor networks. In brief, for-
mation control is to design the appropriate protocol or algorithm
such that the multi-agent system arrives and maintains a prede-
fined geometrical shape, for example, a chain or wedge. In the
recent decades, formation control has been well developed, and
several published results receive the considerable and increasing
attention, such as leader–follower [1], behavior [2], virtual struc-
ture [3], and potential function based approaches [4], where the
leader–follower approach is the most popular one due to its sim-
plicity and scalability. The basic idea is that a leader is designed
as a reference for the agent group, and all agents as followers are
controlled to maintain the desired separation and relative bear-
ing with the leader. The main advantage is that group behavior
is specified by a single quantity (the leader’s motion).

Ever since optimal control, which means that cost function is
minimized, was formally developed about five decades ago by
Bellman [5] and Pontryagin [6], optimization became a funda-
mental design idea and principle in modern control theory. In
recent years, the optimal problem has been addressed in forma-
tion control of multi-agent systems, and several approaches have
been published [7]–[9]. In [7], the finite-time optimal formation
problem of multi-agent systems on the Lie group SE(3) is in-
vestigated. In [8], the finite time optimal formation is applied to
multivehicle systems. In [9], the centralized optimal multi-agent
coordination problem under tree formation constraints is stud-
ied. These published optimal formation methods are achieved
based on the solution of the Hamilton-Jacobi-Bellman (HJB) or
Hamiltonian equation. In practice, the HJB equation is solved
difficultly by analytical approaches owing to the inherent non-
linearities and unknown dynamics.

In order to overcome the difficulty coming from solving the
HJB equation, a reinforcement learning (RL)-based function
approximation strategy is usually considered. The basic idea is
that appropriate actions are taken by evaluating feedback from
environment [10]. One of the most popular means to perform
RL algorithms is the actor–critic architecture, where the actor
performs certain actions by interacting with environment and the
critic evaluates the actions and gives feedback to the actor [11].

1063-6706 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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However, most of the RL-based optimal approaches require
complete knowledge of system dynamics, and it is difficult to
be satisfied for practical situations. In order to release the strict
requirement, an effective solution is the identifier–actor–critic
method because the unknown dynamics are estimated by the
identifier for RL [12].

It is well known that fuzzy logical systems (FLSs) have excel-
lent approximation ability, which can approximate any contin-
uous function to the desired accuracy over a compact set. In the
recent years, many frequently used control techniques have been
well developed based on the FLS approximator, such as back-
stepping, optimizer, small-gain approach, and dead-zone con-
trol [13]–[16], and widely applied to various nonlinear systems,
such as [17]–[22]. However, a common challenge and difficulty
in adaptive fuzzy control is the stability proof because there pos-
sibly exists the undesirable drift in the online learning. Recently,
several stability analysis approaches are published to gain the
extensive attention [23]–[25], they are the effective ways for
solving the difficulty. Nevertheless, for multi-agent system con-
trol, stability analysis becomes more challenging and difficult
owing to the state coupling in the control design. To the opti-
mized formation control, stability analysis is turned into a very
complex and intractability problem because RL is performed by
online training both critic and actor simultaneously.

Motivated by the above-mentioned discussion, in this paper,
the RL algorithm of the identifier–actor–critic architecture is
utilized for the optimized formation control. Based on FLS ap-
proximations of the unknown nonlinear dynamic and optimal
value functions, the identifier, actor, and critic are constructed,
where the online learning for them is continuous and simulta-
neous. The main contributions are listed in the following.

1) The optimized formation control approach can efficiently
solve the tracking problem by segmenting an error term
from the optimal value function. Owing to the diffi-
culty in the convergence analysis of tracking errors, ex-
isting optimization control methods rarely involve the
tracking problem. The proposed optimization strategy
can well carry out tracking control; therefore, it can
guarantee that the leader–follower formation control is
fulfilled.

2) The RL of the identifier–actor–critic architecture is ap-
plied to multi-agent control so that the excellent control
performance can be guaranteed. Most of the existing RLs
are designed based on a common assumption that the
system dynamics are completely known, such as [26] and
[27]. However, this assumption is impractical or very strict
for many practical situations. The proposed RL algorithm
can release the strict assumption because the adaptive
identifier is employed to estimate the system uncertain-
ties, it can meet the practical requirements for real-world
engineering.

3) The strict proofs for the stability and convergence analyses
are given. In most of the existing RL control literature,
Lyapunov function for stability analysis is designed to
contain the infinite horizon value function, such as [12]
and [28]. Because the function’s derivative is negative, it
cannot guarantee that the strict analyses are performed for
stability and convergence.

For convenience, the following notations are used throughout
the paper.

1) R represents the real number; Rn denotes the
real n-dimensional vector space; Rn×m is the
n×m-dimensional matrix space; and In is the n× n
identity matrix.

2) |·| denotes the absolute value; ‖·‖ represents the 2-norm;
and Ω represents the set.

3) T is the transposition symbol; and ⊗ denotes the
Kronecker product.

II. PRELIMINARIES

A. Fuzzy Logic Systems

It has been proven that FLSs have the universal approximation
and learning abilities. A FLS is composed of four parts, which
are the knowledge base, fuzzifier, fuzzy inference engine, and
defuzzifier.

The knowledge base is a collection of fuzzy If-Then rules
described in the following:

Rj : If x1 is Fj
1 and x2 is Fj

2 . . . and xn is Fj
n

Then y is Gj , j = 1, 2, . . . , N

where x = [x1 , . . . , xn ]T is the input; y is the output; Fj
i and

Gj are the fuzzy sets associated with fuzzy membership func-
tions μF j

i
(xi) ∈ R and μGj (y) ∈ R, respectively; and N is the

number of rules.
The singleton fuzzifier, product inference engine, and center-

average defuzzifier are defined as

y(x) =

∑N
j=1

(

θj
n∏

i=1
μF j

i
(xi)

)

∑N
j=1

(
n∏

i=1
μF j

i
(xi)

) (1)

where θj = max
y∈R

μGj (y).

Define the fuzzy basis function as

ϕj (x) =

n∏

i=1
μF j

i
(xi)

∑N
j=1

(
n∏

i=1
μF j

i
(xi)

) (2)

the FLS (1) can be re-expressed as

y(x) = ΘT ϕ(x) (3)

where Θ = [θ1 , . . . , θN ]T is viewed as the adjustable parame-
ter vector and ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T is the fuzzy basis
function vector.

It has been proven that the FLS can uniformly approximate
any continuous nonlinear function to the desired accuracy over a
compact set. This property is described by the following lemma.

Lemma 1: [29] Any real continuous function h(x) ∈ R is
well defined on a compact set Ωh ∈ Rn , there exists the FLS
described by (3) such that

sup
x∈Ωh

|h(x) − y(x)| < ε

where ε > 0 is an arbtrary positive number.
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According to Lemma 1, for any continuous vector-valued
function f(x) = [f1(x), . . . , fm (x)]T ∈ Rm defined on the
compact set Ωf ∈ Rm , there exists an optimal parameter matrix
Θ∗
f = [Θ∗

f 1 , . . . ,Θ
∗
fm ] ∈ RN×m such that

f(x) = Θ∗T
f ϕ(x) + εf (x) (4)

where εf (x) ∈ Rm is the approximation error satisfying
‖εf (x)‖ ≤ δ, δ is a positive constant. The optimal parameter
vector Θ∗

f is defined as

Θ∗
f := arg min

Θ∈RN ×m

{

sup
x∈Ωf

∥
∥f (x) − ΘT

f ϕ(x)
∥
∥

}

(5)

where Θf = [Θf 1 , . . . ,Θfm ] ∈ RN×m is the adjustable param-
eter matrix. It should be mentioned that Θ∗

f needs to be estimated
because it is an “artificial” quantity just for analysis purposes.

B. Algebraic Graph Theory

The interconnection topology of a multi-agent system
can be depicted by a graph G = (Υ,Ξ, A), where Υ =
{υ1 , υ2 , . . . , υn}, Ξ ⊆ Υ × Υ and A = [aij ] are the node set,
edge set, and adjacency matrix, respectively. Let ξij = (υi, υj )
denote the edge connecting both agents i and j, then ξij ∈ Ξ if
and only if there is an information flow from agent j to agent
i. Agent j is called as a neighbor of agent i if ξij ∈ Ξ, and the
neighbor set of agent i is denoted by Λi = {υj‖ (υi, υj ) ∈ Ξ}.
The adjacency element aij denotes the communication weight
corresponding to the edge ξij , which satisfies ξij ∈ Ξ ⇔ aij =
1 and otherwise aij = 0. A graph G is called undirected if
aij = aji . An undirected graph is called connected if any a pair
of distinct nodes can be connected by an undirected path. The
Laplacian matrix L = [lij ] ⊂ Rn×n of the weight graph G is
defined as

L = D −A (6)

where d = diag{d1 , . . . , dn}, di =
∑n

j=1 aij .
Let bi denote the connection weight between agent i and the

leader. If there is the information communication between agent
i and the leader, then bi = 1, otherwise bi = 0. It is assumed that
at least one agent connects with the leader, i.e., b1 + b2 + · · · +
bn > 0.

C. Supporting Lemmas

Lemma 2: [30] An undirected graph G is connected if and
only if its Laplacian is irreducible.

Lemma 3: [30] Let Q = [qij ] ∈ Rn×n be an irreducible ma-
trix such that qij = qji ≤ 0 for i 
= j and qii = −∑n

j=1 qij for
i = 1, 2, . . . , n. Then all eigenvalues of the matrix

⎡

⎢
⎣

q11 + q̄1 · · · q1n
...

. . .
...

qn1 · · · qnn + q̄n

⎤

⎥
⎦

are positive, where q̄1 , q̄2 , . . . , q̄n are non-negative constants
satisfying q̄1 + q̄2 + · · · + q̄n > 0.

Lemma 4: [30] Let Φ(t) ∈ R be a continuous positive func-
tion with bounded initial value Φ(0). If Φ̇(t) ≤ −αΦ(t) + β

is held, where α and β are positive constants, then there is the
following result:

Φ(t) ≤ e−αtΦ(0) +
β

α

(
1 − e−αt

)
. (7)

III. MAIN RESULTS

A. Problem Formulation

Consider the multi-agent system modeled in the following:

ẋi(t) = fi (xi(t)) + ui, i = 1, . . . , n (8)

where xi(t) ∈ Rm is the state; ui ∈ Rm is the control input;
and fi (·) :Rm → Rm with fi(0) = 0n is the unknown non-
linear continuous vector-value function. These terms fi (xi) +
ui, i = 1, 2, . . . , n, are assumed Lipschitz continuous on
the set containing origin so that the solution of differential
equation (8) is unique for any bounded initial state xi(0). The
system (8) is assumed stabilizable, i.e., there exists the contin-
uous control ui such that the system is asymptotically stable.
The communication graph G is assumed to be an undirected
connected graph.

Let xd(t), ẋd(t) ∈ Rm denote the desired trajectory and ve-
locity of the formation movement, which are assumed known
and bounded. Define the tracking error variable for agent i as

zi(t) = xi(t) − xd(t) − ηi, i = 1, 2, . . . , n (9)

where ηi = [ηi1 , ηi2 , . . . , ηim ]T is the relative position vector
between agent i and the leader, which depicts the predefined
formation pattern.

Definition 1: [31] The multi-agent system (8) is said to
achieve the desired formation if its solutions satisfy

lim
t→∞ ‖xi(t) − xd(t) − ηi‖ = 0, i = 1, . . . , n

for the bounded initial conditions.
Based on (8), the following error dynamic can be yielded:

żi(t) = fi (xi) − ẋd(t) + ui, i = 1, . . . , n. (10)

Define the formation errors as

ei(t) =
∑

j∈Λ i

aij (xi(t) − ηi − xj (t) + ηj )

+ bi (xi(t) − xd(t) − ηi) , i = 1, . . . , n (11)

where aij is the ith row and jth column element of adjacency
matrix A; and bi is the connection weight between agent i and
the leader. Inserting (9) into (11), the following equation can be
yielded:

ei(t) =
∑

j∈Λ i

aij (zi − zj ) + bizi , i = 1, . . . , n. (12)

Based on the multi-agent dynamic (8), time derivative of the
formation error is

ėi(t) = cifi(xi) + ciui − biẋd(t) −
∑

j∈Λ i

aij ẋj (t) (13)

where ci =
∑

j∈Λ i
aij + bi .

Define the infinite horizon value function as

V (e(t)) =
∫∞
t r (e(τ), u(e)) dτ (14)
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where r (e, u) = eT (t)e(t) + uT (C ⊗ Im )u = zT (t)(L̃T L̃⊗
Im )z(t) + uT (C ⊗ Im )u is the cost function, where eT (t) =
[eT1 , . . . , e

T
n ]; u =

[
uT1 , . . . , u

T
n

]T
; z =

[
zT1 , . . . , z

T
n

]T
; C =

diag{c1 , . . . , cn}; and L̃ = L+B. It should be mentioned that
L̃ is a positive definite matrix in accordance with Lemma 3.

Let ri (ei, ui) = eTi ei + ciu
T
i ui and Vi(ei) =

∫∞
t ri

(
ei(τ),

ui(ei)
)
dτ , the value function (14) can be re-expressed as

V (e) =
n∑

i=1

Vi(ei) =
n∑

i=1

∫ ∞

t

ri (ei(τ), ui(ei)) dτ. (15)

Definition 2: [32] The multi-agent formation control
ui, i = 1, . . . , n, is said to be admissible associating with
(10) on a set Ω̄, which is denoted by ui=1,··· ,n ∈ Ψ

(
Ω̄
)
, if

ui, i = 1, . . . , n, is continuous with ui(0) = 0, ui stabilizes
(10) and V (e) is finite.

The optimized formation problem for the multi-agent system
(8) is to find the admissible control policies ui, i = 1, . . . , n,
such that the infinite horizon value function (14) can be mini-
mized.

The control objective. Based on the RL algorithm of the
identifier–actor–critic architecture, design the optimized forma-
tion control ui, i = 1, . . . , n, for multi-agent system (8) such
that 1) all signals are semiglobally uniformly ultimately bounded
(SGUUB); and 2) the leader–follower formation control can be
achieved.

Based on the infinite horizon value function (14), the follow-
ing Hamiltonian function is derived:

H

(

e, u,
∂V

∂e

)

= r (e, u) +
∂V (e)
∂eT

ė(t)

= eT e+ uT (C ⊗ Im )u+
n∑

i=1

(
∂Vi(ei)
∂eTi

ėi(t)
)

=
n∑

i=1

(

‖ei(t)‖2 + ci ‖ui‖2 +
∂Vi(ei)
∂eTi

ėi(t)
)

(16)

where ∂V (e)
∂e and ∂Vi (ei )

∂ei
denote the gradient of V (e(t)) and

Vi(ei) corresponding to e(t) and ei(t), respectively.

Let u∗ =
[
u∗T1 , . . . , u∗Tn

]T
be the optimal formation control,

then the optimal value function can be yielded as

V ∗(e) = min
ui= 1 , ··· , n ∈Ψ(Ω)

∫ ∞

t

r (e, u) dτ =
∫ ∞

t

r (e, u∗) dτ

=
n∑

i=1

V ∗
i (ei) =

n∑

i=1

min
ui ∈Ψ(Ω)

∫ ∞

t

ri (ei, ui) dτ

=
n∑

i=1

∫ ∞

t

ri (ei, u∗i ) dτ (17)

where V ∗
i (ei) =

∫∞
t ri (ei, u∗i ) dτ , Ω ⊂ Rm is a compact set

containing origin.

Integrating both (16) and (17), the HJB equation is yielded as

H

(

e, u∗,
∂V ∗

∂e

)

= r (e, u∗) +
∂V ∗(e)
∂eT

ė(t)

=
n∑

i=1

(

‖ei‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (ei)
∂eTi

ėi(t)
)

= 0. (18)

Associated with (13) and (18), the distributed HJB equation
can be derived as

Hi

(

ei, u
∗
i ,
∂V ∗

i

∂ei

)

= ‖ei‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (ei)
∂eTi

(

cifi(xi)

+ ciu
∗
i − biẋd(t) −

∑

j∈Λ i

aij ẋj (t)

⎞

⎠ = 0, i = 1, . . . , n.

(19)

Obviously, if the distributed HJB equations (19) are held, the
HJB equation (18) is held. Assuming the solution of (19) is
existent and unique, the following optimal formation control u∗i
can be obtained by solving ∂Hi(ei, u∗i ,

∂V ∗
i

∂ ei
)/∂u∗i = 0:

u∗i = −1
2
∂V ∗

i (ei)
∂ei

, i = 1, . . . , n. (20)

Substituting (20) into (19) yields

‖ei(t)‖2 +
∂V ∗

i

∂eTi

⎛

⎝cifi(xi) − biẋd(t) −
∑

j∈Λ i

aij ẋj (t)

⎞

⎠

− ci
4
∂V ∗

i

∂eTi

∂V ∗
i

∂ei
= 0, i = 1, . . . , n. (21)

In order to achieve the optimal formation control (20), the term
∂V ∗

i (ei )
∂ei

is required, which is expected to obtain by solving (21).
However, due to the unknown dynamics and inherent nonlinear-
ities, the equation is impossible or very difficult to be solved.
Therefore, the RL algorithm of the identifier–actor–critic archi-
tecture can be considered to realize the control.

B. FLS Identifier Design

Since these dynamic functions fi(xi), i = 1, . . . , n, of
multi-agent system (8) are unknown, the FLS-based identifiers
are established to estimate the unknown functions for achieving
the optimized formation scheme.

For xi ∈ Ω where i = 1, . . . , n, the function fi(xi) can be
approximated by the FLS in the following:

fi(xi) = Θ∗T
f i ϕf i (xi) + εf i(xi), i = 1, . . . , n (22)

where Θ∗
f i ∈ Rp1 ×m is the optimal parameter matrix;

ϕf i (xi) ∈ Rp1 is the fuzzy basis function vector; p1 is the
fuzzy rule number; εf i(xi) ∈ Rm is the approximation error
satisfying ‖εf i(xi)‖ ≤ δf i , and δf i is a positive constant.

Since the optimal parameter matrix Θ∗
f i is the unknown con-

stant matrix that cannot be applied directly, it needs to be esti-
mated. Let Θ̂T

f i(t) denote the estimation, the adaptive identifier
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is built as

˙̂xi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) + ui,

i = 1, . . . , n (23)

where x̂i(t) ∈ Rm is the identifier state, and x̃i(t) = x̂i(t) −
xi(t) is the identification error.

Design the updating law for Θ̂f i(t) as

˙̂Θf i(t) = Γi
(
−ϕf i(xi)x̃Ti (t) − σiΘ̂f i(t)

)
,

i = 1, . . . , n (24)

where Γi ∈ Rp1 ×p1 is the positive definite gain matrix and σi is
the positive design parameter.

Based on (8), (22), and (23), the identifier error dynamics can
be yielded as

˙̃xi(t) = −kix̃i(t) + Θ̃T
f i(t)ϕf i (xi) − εf i(xi),

i = 1, . . . , n (25)

where Θ̃f i(t) = Θ̂f i(t) − Θ∗
f i is the estimation error.

Theorem 1: If the proposed identifier (23) with updating law
(24) is used for identifying the multi-agent (8), then 1) the
errors Θ̃f i(t) and x̃i(t) are SGUUB; 2) the identification error
x̃i(t) can arrive to the desired accuracy by making the design
parameters ki, i = 1, . . . , n, large enough.

Proof: 1) Consider the Lyapunov candidate as following:

E1(t) =
1
2

n∑

i=1

x̃Ti (t)x̃i(t) +
1
2

n∑

i=1

Tr
(
Θ̃T
f iΓ

−1
i Θ̃f i

)
. (26)

Taking the time derivative along (24) and (25) is

Ė1(t) =
n∑

i=1

x̃Ti (t)
(
−kix̃i(t) + Θ̃T

f i(t)ϕf i (xi) − εf i(xi)
)

−
n∑

i=1

Tr
(
Θ̃T
f i(t)ϕf i(xi)x̃

T
i (t) + σiΘ̃T

f i(t)Θ̂f i(t)
)
. (27)

According to the property of trace operator Tr(baT ) = aT b
where a, b ∈ Rn , there is the following fact:

Tr
[
Θ̃T
f i(t)ϕf i(xi)x̃

T
i (t)

]
= x̃Ti (t)

(
Θ̃T
f i(t)ϕf i(xi)

)
. (28)

Substituting (28) into (27), we obtain

Ė1(t) = −
n∑

i=1

ki ‖x̃i(t)‖2 −
n∑

i=1

x̃Ti (t)εf i(xi)

−
n∑

i=1

σiTr
(
Θ̃T
f i(t)Θ̂f i(t)

)
. (29)

According to the Cauchy–Buniakowsky–Schwarz inequality
[33] (

∑n
k=1 akbk )

2 ≤ (
∑n

k=1 a
2
k )(

∑n
k=1 b

2
k ) and Young’s in-

equality [34] ab ≤ a2

2 + b2

2 , there is the following result:

− x̃Ti (t)εf i(xi) ≤ 1
2

∥
∥x̃Ti (t)

∥
∥2

+
1
2
δ2
f i . (30)

Based on the fact that Tr(Θ̃T
f iΘ̂f i) = 1

2 Tr(Θ̃T
f iΘ̃f i) +

1
2 Tr(Θ̂T

f iΘ̂f i) − 1
2 Tr(Θ∗T

f i Θ
∗
f i), the following equation can be

obtained:

− σiTr
(
Θ̃T
f i(t)Θ̂f i(t)

)
≤ −σi

2
Tr

(
Θ̃T
f i(t)Θ̃f i(t)

)

+
σi
2

Tr
(
Θ∗T
f i Θ

∗
f i

)
. (31)

Substituting (30) and (31) into (29) yields

Ė1(t) ≤ −
n∑

i=1

(

ki − 1
2

)

‖x̃i‖2 −
n∑

i=1

σi
2

Tr
(
Θ̃T
f iΘ̃f i

)
+ β1

≤ −
n∑

i=1

(

ki − 1
2

)

‖x̃i(t)‖2 −
n∑

i=1

σi

2λmax(Γ−1
i )

× Tr
(
Θ̃T
f i(t)Γ

−1
i Θ̃f i(t)

)
+ β1 (32)

where β1 = 1
2

∑n
i=1(σiTr(Θ∗T

f i Θ
∗
f i) + δ2

f i); and λmax(Γ−1
i ) de-

notes the maximal eigenvalue of Γ−1
i .

Let α1 = min{2(k1 − 1
2 ), . . . , 2(kn − 1

2 ), σ1
λmax(Γ−1

1 ) , . . . ,
σn

λmax(Γ−1
n ) }, (32) can be rewritten as

Ė1(t) ≤ −α1E1(t) + β1 . (33)

According to Lemma 4, the following inequality can be ob-
tained:

E1(t) ≤ e−αe tE1(0) +
βe
αe

(
1 − e−αe t

)
(34)

it implies that the identifier and estimation errors are SGUUB.
2) Let Ex(t) = 1

2

∑n
i=1 x̃

T
i (t)x̃i(t), its time derivative along

(25) is

Ėx(t) ≤
n∑

i=1

(
−ki ‖x̃i‖2 + x̃Ti Θ̃T

f iϕf i (xi) − x̃Ti εf i

)
.(35)

Inserting the following facts:

x̃Ti (t)Θ̃T
f i(t)ϕf i(xi) ≤

1
2
‖x̃i(t)‖2 +

1
2

∥
∥
∥Θ̃T

f i(t)ϕf i(xi)
∥
∥
∥

2
,

− x̃Ti (t)εf i(xi) ≤ 1
2
‖x̃i(t)‖2 +

1
2
δ2
f i

to (35) yields

Ėx(t) ≤ −
n∑

i=1

(ki − 1) ‖x̃i(t)‖2 + ψx(t) (36)

where ψx(t) = 1
2

∑n
i=1(‖Θ̃T

f i(t)ϕf i(xi)‖2 + δ2
f i).

Since these estimation errors Θ̃T
f 1(t), . . . , Θ̃

T
f n (t) are

bounded, which are proven by part 1, the termψx(t) is bounded.
Let α2 = min

i=1,...,n
{ki − 1} and β2 = sup

t≥0
{ψx(t)}, (36)

becomes

Ėx(t) ≤ −α2Ex(t) + β2 . (37)

Applying Lemma (4), we obtain the following equation:

Ex(t) ≤ e−α2 tEx(0) +
β2

α2

(
1 − e−β2 t

)
. (38)

The above-mentioned inequality means that the identifier error
can arrive the desired accuracy by making α2 large enough. �
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C. Optimized Formation Control Design

Since the multi-agent dynamic function fi(xi) is unknown,
the identifier (23) plays an essential role in the formation control
design. Define the identifier tracking and identifier formation
errors as

ẑi(t) = x̂i(t) − xd(t) − ηi,

êi(t) =
∑

j∈Λ i

aij (x̂i(t) − ηi − x̂j + ηj ) + bi ẑi (t) . (39)

Based on the identifier dynamic (23), the following error dy-
namics can be yielded:

˙̂zi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) − ẋd(t) + ui, (40)

˙̂ei(t) = −kicix̃i(t) + ciΘ̂T
f i(t)ϕf i (xi) + ciui − biẋd

−
∑

j∈Λ i

aij ˙̂xj (t), i = 1, . . . , n. (41)

Similar to (14)–(19), the optimal value function for the error
dynamic (41) is

V ∗(ê) = min
ui= 1 , ··· , n ∈Ψ(Ω)

∫ ∞

t

r (ê(τ), u(ê)) dτ

=
n∑

i=1

V ∗
i (êi) =

n∑

i=1

min
ui ∈Ψ(Ω)

∫ ∞

t

ri (êi(τ), ui(êi)) dτ

=
n∑

i=1

∫ ∞

t

ri (êi(τ), u∗i (êi)) dτ (42)

where ê(t) = [êT1 (t), êT2 (t), . . . , êTn (t)]T . Then the distributed
HJB equation associated with (41) can be yielded as

Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= ‖êi(t)‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (êi)
∂êTi

˙̂ei

= ‖êi(t)‖2 + ci ‖u∗i ‖2 +
∂V ∗

i (êi)
∂êTi

(

− kici x̃i(t) + ciu
∗
i

+ ciΘ̂T
f i(t)ϕf i (xi) − biẋd −

∑

j∈Λ i

aij ˙̂xj (t)
)

= 0,

i = 1, . . . , n. (43)

Assume the solution of (43) to be existent and unique. By
solving ∂Hi(êi , u∗i ,

∂V ∗
i

∂ êi
)/∂u∗i = 0, the optimal formation con-

trol u∗i can be obtained as

u∗i = −1
2
∂V ∗

i (êi)
∂êi

, i = 1, . . . , n. (44)

Segment the optimal value function (42) into two parts as

V ∗
i (êi) = γi ‖êi(t)‖2 + V o

i (êi), i = 1, . . . , n (45)

where γi is a positive design constant, and V o
i (êi) =

−γi ‖êi(t)‖2 + V ∗
i (êi). Inserting (45) into (44), the optimal for-

mation control can become

u∗i = −γiêi(t) − 1
2
∂V o

i

∂êi
, i = 1, . . . , n. (46)

Since V o
i (êi) is the continuous function, for êi ∈ Ω where

i = 1, . . . , n, V o
i (êi) can be approximated by FLS as

V o
i (êi) = Θ∗T

i ϕi (êi) + εi(êi), i = 1, . . . , n (47)

where Θ∗
i ∈ Rp2 is the optimal parameter matrix; ϕi (êi) ∈

Rp2 is the fuzzy basis function vector; p2 is the fuzzy rule
number; and εi(êi) ∈ R is the approximation error to satisfy
|εi(êi)| ≤ δi where δi is a constant.

Based on the FLS approximation (47), the optimal value func-
tion (45) and optimal control (46) can be rewritten as

V ∗
i (êi) = γi ‖êi(t)‖2 + Θ∗T

i ϕi (êi) + εi(êi), (48)

u∗i = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ∗
i −

1
2
∂εi(êi)
∂êi

,

i = 1, . . . , n (49)

where ∂ϕi (ê i )
∂ êi

and ∂εi (ê i )
∂ êi

are the gradients with respect to êi .
Substituting (48) and (49) into (43), we obtain the following

equation:

Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= −(γ2
i ci − 1) ‖êi(t)‖2 + 2γiêTi (t)

×
⎛

⎝ciΘ̂T
f iϕf i (xi) − kici x̃i(t) − biẋd −

∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠

+ Θ∗T
i

∂ϕi (êi)
∂êTi

(
ciΘ̂T

f iϕf i (xi) − γici êi(t) − kici x̃i(t)

−biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠− ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

+ εi(t) = 0 (50)

where

εi(t) =
∂εi(êi)
∂êTi

(
ciu

∗
i − kici x̃i(t) + ciΘ̂T

f iϕf i(xi) − biẋd

−
∑

j∈Λ i

aij ˙̂xj (t)
)

+
ci
4

∥
∥
∥
∥
∂εi(êi)
∂êi

∥
∥
∥
∥

2

.

The term εi(t) is bounded because all terms are bounded.
Since the optimal parameter matrix Θ∗

i is unknown, the op-
timal formation controller (49) cannot be applied directly. In
order to obtain the available control scheme, the following actor–
critic RL algorithm is constructed based on the FLS approxima-
tion (47), of which actor and critic FLSs are utilized to imple-
ment the control behavior and evaluate the control performance,
respectively:

V̂ ∗
i (êi) = γi ‖êi(t)‖2 + Θ̂T

ci(t)ϕi (êi) , (51)

ui = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t), i = 1, . . . , n

(52)
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where V̂ ∗
i (êi) denotes the estimations of V ∗

i (êi); and Θ̂ci(t) ∈
Rp2 and Θ̂ai(t) ∈ Rp2 are the critic and actor parameter vectors,
respectively.

Using (51) and (52), the approximated HJB equation can be
obtained as

Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

= ‖êi‖2 + ci

∥
∥
∥
∥−γiêi −

1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

+
(

2γiêTi + Θ̂T
ci(t)

∂ϕi (êi)
∂êTi

)(
ciΘ̂T

f i(t)ϕf i(xi) − kici x̃i(t)

−γici êi − ci
2
∂T ϕi (êi)
∂êi

Θ̂T
ai(t) − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠ ,

i = 1, . . . , n. (53)

Define the Bellman residual error φi(t) as

φi(t) = Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

−Hi

(

êi , u
∗
i ,
∂V ∗

i

∂êi

)

= Hi

(

êi , ui ,
∂V̂ ∗

i

∂êi

)

, i = 1, . . . , n. (54)

Let Φi(t) = 1
2φ

2
i (t), the critic updating law can be yielded based

on the gradient descent algorithm for minimizing the Bellman
residual error:

˙̂Θci(t) = − κci

1 + ‖ξi(t)‖2
∂Φi(t)
∂Θ̂ci(t)

= − κciξi(t)
1 + ‖ξi(t)‖2

(

ξTi (t)Θ̂ci(t) − (γ2
i ci − 1) ‖êi(t)‖2

+ 2γiêTi

⎛

⎝ciΘ̂T
f i(t)ϕf i(xi) − kicix̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2 )

, i = 1, . . . , n (55)

where κci > 0 is the critic learning rate; and

ξi(t) =
∂ϕi (êi)
∂êTi

(
ciΘ̂T

f i(t)ϕf i(xi) − kicix̃i − γici êi

−ci
2
∂T ϕi (êi)
∂êi

Θ̂ai(t) −biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠ .

The actor weight updating law is designed as

˙̂Θai(t) =
1
2
∂ϕi (êi)
∂êTi

êi(t) − κaici
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
κcici

4
(
1 + ‖ξi(t)‖2

)
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

× Θ̂ai(t)ξTi (t)Θ̂ci(t), i = 1, . . . , n (56)

where κai > 0 is the actor learning rate.

Assumption 1: [28] Persistence of excitation (PE): the signs
of ξi(t)ξTi (t), i = 1, 2, . . . , n, are required persistent excita-
tion over the interval [t, t+ ti ], i.e., there exist constants ςi > 0,
ζi > 0, t̄i > 0 for all t satisfying the following condition:

ςiIp2 ≤ ξi(t)ξTi (t) ≤ ζiIp2 (57)

where Ip2 ∈ Rp2 ×p2 is the identity matrix.

D. Stability Analysis

Theorem 2: Consider the multi-agent system (8) with
bounded initial conditions and reference signal. If the opti-
mized multi-agent formation control (52) is performed based
on the identifier–critic–actor RL algorithm, where the identifier,
actor, and critic are online trained by the adaptive laws (24),
(55), and (56), respectively, then by choosing appropriate de-
sign parameters, the optimized formation control can guarantee
that

1) all error signals are SGUUB; and
2) the leader–follower formation control can be achieved.
Proof: 1) Choose the Lyapunov function candidate as

E(t) =
1
2
ẑT (t)(L̃⊗ Im )ẑ(t) +

1
2

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

+
1
2

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) (58)

where Θ̃ai(t) = Θ̂ai(t) − Θ∗, Θ̃ci(t) = Θ̂ci(t) − Θ∗. The time
derivative along (40), (55), and (56) is

Ė(t) =
n∑

i=1

êTi (t)
(
−kix̃i(t) + Θ̂T

f i(t)ϕf i (xi) − ẋd(t) + ui

)

+
n∑

i=1

Θ̃T
ai(t)

(
1
2
∂ϕi (êi)
∂êTi

êi − κaici
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
κcici

4
(
1 + ‖ξi(t)‖2

)
∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi (t)Θ̂ci(t)

⎞

⎠

+
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi‖2

(
ξTi (t)Θ̂ci − (γ2

i ci − 1) ‖êi‖2

+ 2γiêTi (t)

⎛

⎝ciΘ̂T
f i(t)ϕf i (xi) − kicix̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

. (59)
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According to Young’s and Cauchy–Buniakowsky–Schwarz
inequalities, there are the following facts:

− kiê
T
i (t)x̃i(t) ≤ ki ‖êi(t)‖2 +

ki
4
‖x̃i(t)‖2 ,

êTi (t)Θ̂T
f i(t)ϕf i (xi) ≤

1
2
‖êi(t)‖2 +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i
∥
∥
∥

2
,

− êTi (t)ẋd(t) ≤ 1
2
‖êi(t)‖2 +

1
2
‖ẋd(t)‖2 . (60)

Inserting the above-mentioned inequalities and control law (52)
into (59), we obtain

Ė(t) ≤ −
n∑

i=1

(γi − ki − 1) ‖êi‖2 +
n∑

i=1

(

−1
2
êTi
∂T ϕi (êi)
∂êi

Θ̂ai

+
1
2
Θ̃T
ai

∂ϕi (êi)
∂êTi

êi − κaiciΘ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci(t)

⎞

⎠

+
n∑

i=1

Θ̃T
ci(t)

(

− κciξi

1 + ‖ξi‖2

(
ξTi Θ̂ci(t) − (γ2

i ci − 1) ‖êi‖2

+ 2γiêTi

⎛

⎝Θ̂T
f i(t)ϕf i (xi) − kici x̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

+
n∑

i=1

(
ki
4
‖x̃i‖2 +

1
2
‖ẋd‖2

+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i (xi)
∥
∥
∥

2
)

. (61)

Based on the fact that Θ̃ai(t) = Θ̂ai(t) − Θ∗
i , there are the fol-

lowing equations:

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

êi − êTi (t)
∂T ϕi (êi)
∂êi

Θ̂ci = −êTi
∂T ϕi (êi)
∂êi

Θ∗
i ,

− κaiciΘ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) = −κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) − κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
κaici

2
Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i .

Substituting the above-mentioned equations into (61) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 1) ‖êi‖2 − 1
2

n∑

i=1

êTi
∂T ϕi (êi)
∂êi

Θ∗
i

−
n∑

i=1

κaici
2

Θ̃T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai −
n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

)

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi (t)Θ̂ci(t) +
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi(t)‖2

(
ξTi Θ̂ci(t) − (γ2

i ci − 1) ‖êi‖2 + 2γiêTi (t)

⎛

⎝Θ̂T
f i(t)ϕf i (xi) − kici x̃i − biẋd −

∑

j∈Λ i

aij ˙̂xj

⎞

⎠

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

+
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2
‖ẋd(t)‖2

+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i(xi)
∥
∥
∥

2
+
κaici

2
Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i

)

.

(62)

According to (50), the following equation can be obtained:

− (γ2
i ci − 1) ‖êi(t)‖2 + 2γiêTi (t)

(
ciΘ̂T

f i(t)ϕf i (xi) − kicix̃i

−biẋd(t) −
∑

j∈Λ i

aij ˙̂xj (t)

⎞

⎠ = −ξTi (t)Θ∗
i −

ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

− εi(t). (63)

Applying (63) and the fact that

− 1
2
êTi (t)

∂T ϕi (êi)
∂êi

Θ∗
i ≤ ‖êi‖2 +

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

(64)

(62) can be rewritten as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi‖2 −
n∑

i=1

κaici
2

Θ̃T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai −
n∑

i=1

κaici
2

Θ̂T
ai

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

ξTi (t)Θ̂ci(t) +
n∑

i=1

Θ̃T
ci(t)

(

− κciξi(t)
1 + ‖ξi(t)‖2

(
ξTi (t)Θ̃ci(t)

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

− ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

− εi

))

+
n∑

i=1

(
ki
4
‖x̃i‖2
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+
1
2

∥
∥
∥Θ̂T

f i(t)ϕf i(xi)
∥
∥
∥

2
+
κaici + 2

2

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

+
1
2
‖ẋd‖2

)

. (65)

Using the fact that

ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

− ci
2

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
ci
4

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2

=
ci
4

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

− ci
4

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) (66)

(65) can be rewritten as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) −
n∑

i=1

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t)

+
n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci

−
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ̃

T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

+
n∑

i=1

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiεi(t) −

n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) +
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2

∥
∥
∥Θ̂T

f iϕf i(xi)
∥
∥
∥

2

+
1
2
‖ẋd‖2 +

κaici + 2
2

∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2
)

. (67)

Substituting the facts that

n∑

i=1

κcici

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)ξTi Θ̂ci(t)

−
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ̃

T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

=
n∑

i=1

ciκci

4
(
1+‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi

∂T ϕi (êi)
∂êi

Θ̂ai(t),

κci

1 + ‖ξi‖2 Θ̃T
ci(t)ξiεi(t) ≤

κci

2(1 + ‖ξi‖2)
Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t)

+
κci

2(1 + ‖ξi‖2)
ε2i (t)

into (67) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

κaici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t) −
n∑

i=1

κci

2
(
1 + ‖ξi‖2

) Θ̃T
ciξiξ

T
i Θ̃ci

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi

∂T ϕi (êi)
∂êi

Θ̂ai(t)

+
n∑

i=1

ciκci

4
(
1 + ‖ξi‖2

) Θ̃T
ci(t)ξiΘ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

−
n∑

i=1

κaici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) + ψe(t) (68)

where

ψe(t) =
n∑

i=1

(
ki
4
‖x̃i(t)‖2 +

1
2
‖ẋd(t)‖2

+
κci

2(1 + ‖ξi(t)‖2)
ε2i (t) +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i
∥
∥
∥

2

+
(
1 +

κaici
2

)∥∥
∥
∥
∂T ϕi (êi)
∂êi

Θ∗
i

∥
∥
∥
∥

2
)

.

Using Young’s and Cauchy–Buniakowsky–Schwarz inequal-
ities, we obtain the following results:

κcici

4
(
1 + ‖ξi(t)‖2

) Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi(t)

∂T ϕi (êi)
∂êi

Θ̂ai(t)

≤ ci
32

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

Θ∗T
i ξi(t)ξTi (t)Θ∗

i

∂T ϕi (êi)
∂êi

Θ̃ai(t)

+
κ2
cici
2

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t),

κcici

4
(
1 + ‖ξi(t)‖2

) Θ̃T
ci(t)ξi(t)Θ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

≤ ci

32
(
1 + ‖ξi(t)‖2

) Θ̃T
ci(t)ξi(t)Θ

∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i ξ
T
i (t)Θ̃ci(t) +

κ2
cici
2

Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t).
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Inserting the above-mentioned facts into (68) yields

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi‖2 −
n∑

i=1

(
κaici

2
− κ2

cici
2

− ci
32

Θ∗T
i ξi(t)ξTi (t)Θ∗

i

)
Θ̃T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̃ai(t)

−
n∑

i=1

1
(
1 + ‖ξi‖2

)

(
κci
2

− ci
32

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i

)

Θ̃T
ci(t)ξiξ

T
i Θ̃ci(t) −

n∑

i=1

(
κaici

2
− κ2

cici
2

)

Θ̂T
ai(t)

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ̂ai(t) + ψe(t). (69)

Make the design parameters to satisfy the following conditions:

γi ≥ ki + 2, κci ≥ ci
16

Θ∗T
i

∂ϕi (êi)
∂êTi

∂T ϕi (êi)
∂êi

Θ∗
i ,

κai ≥ κ2
ci +

ζi
16

Θ∗T
i Θ∗

i . (70)

Based on the PE condition (see Assumption 1), (69) can be
written as

Ė(t) ≤ −
n∑

i=1

(γi − ki − 2) ‖êi(t)‖2 −
n∑

i=1

(
κaici

2
− κ2

cici
2

−ζici
32

Θ∗T
i Θ∗

i

)

λmin
i Θ̃T

ai(t)Θ̃ai(t) −
n∑

i=1

(
κciςi

2
− λmax

i ςici
32

Θ∗T
i Θ∗

i

)
Θ̃T
ci(t)Θ̃ci(t) + ψe(t) (71)

where λmax
i and λmin

i are the maximum and minimum eigen-

values of ∂ϕi (ê i )
∂ êTi

∂ T ϕi (ê i )
∂ êi

.

Let γ = min
i=1,...,n

{γi − ki − 2}, κa = min
i=1,...,n

{(κa i ci2 − κ2
c i ci
2

− ζi ci
32 Θ∗T

i Θ∗
i )λ

min
i }, κc = min

i=1,...,n
{κc i ςi2 − λm a x

i ςi ci
32 Θ∗T

i Θ∗
i },

and βe = sup
t≥0

{ψe(t)}, (71) can be redescribed as

Ė(t) ≤ −γ
n∑

i=1

‖êi(t)‖2 − κa

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

− κc

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) + βe. (72)

Furthermore, according to (80) (in Remark 1), the above-
mentioned inequality can be written as

Ė(t) ≤ − γ

λmax
ẑT (t)(L̃⊗ Im )ẑ(t) − κa

n∑

i=1

Θ̃T
ai(t)Θ̃ai(t)

− κc

n∑

i=1

Θ̃T
ci(t)Θ̃ci(t) + βe ≤ −αeE(t) + βe (73)

where αe = min{ 2γ
λm a x

, 2κa , 2κc}.

According to Lemma 4, there is the fact that

≤ e−αe tE(0) +
βe
αe

(
1 − e−αe t

)

From the above-mentioned inequality, it can be concluded
that all error signals zi(t), W̃ci(t), W̃ai(t), i = 1, . . . , n are
SGUUB.

2) Let Ez (t) = 1
2 ẑ

T (t)(L̃⊗ Im )ẑ(t), its time derivative
along (40) is

Ėz (t) =
n∑

i=1

(
−kiêTi (t)x̃i(t) + êTi (t)Θ̂T

f i(t)ϕf i (xi)

−êTi (t)ẋd(t) + êTi (t)ui
)
. (74)

Performing the control (52) to the above-mentioned equation
yields

Ėz (t) = −
n∑

i=1

γi ‖êi(t)‖2 +
n∑

i=1

(
êTi (t)Θ̂T

f i(t)ϕf i (xi)

−kiêTi (t)x̃i(t) − 1
2
êTi
∂T ϕi (êi)
∂êi

Θ̂ai(t) − êTi (t)ẋd

)

. (75)

Applying (60) and the following inequality

−1
2
êTi (t)

∂T ϕi (êi)
∂êi

Θ̂ai(t) ≤ ‖êi(t)‖2 +
∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2

to (75) has

Ėz (t) ≤ −γ ‖ê(t)‖2 + ψz (t) (76)

where

ψz (t) =
n∑

i=1

(
1
2
‖ẋd‖2 +

ki
4
‖x̃i‖2 +

1
2

∥
∥
∥Θ̂T

f i(t)ϕf i (xi)
∥
∥
∥

2

+
∥
∥
∥
∥
∂T ϕi (êi)
∂êi

Θ̂ai(t)
∥
∥
∥
∥

2
)

.

From Theorem 1 and part 1, it can be concluded that all terms
of ψz (t) are bounded. Therefore, there exists a constant βz such
that ψz (t) ≤ βz . Furthermore, based on (80) (in Remark 1),
there is the following equation:

Ėz (t) ≤ − γ

λmax
ẑT (t)(L̃⊗ Im )ẑ(t) + βz

= −αzEz (t) + βz (77)

where αz = 2γ
λm a x

.
According to Lemma 4, the following result can be obtained:

Ez (t) ≤ e−αz tEz (0) +
βz
αz

(
1 − e−αz t

)
. (78)

The above-mentioned inequality implies that the tracking errors
can arrive at the desired accuracy by making αz large enough,
as a result, the desired control performance can be obtained. �

Remark 1: Since L̃ is a positive definite matrix in accordance
with Lemma 2, it has n positive eigenvalues that are denoted
by λ1 , λ2 , . . . , λn . Let χ1 , χ2 , . . . , χn denote the eigenvectors
associated with these eigenvalues. According to matrix theory,
χ1 , χ2 , . . . , χn can be chosen to be a set of orthogonal bases. Let
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Q = [χ1 , χ2 , . . . , χn ] ∈ Rn×n and P = diag{λ1 , λ2 , . . . , λn},
there are the facts that QT Q = QQT = In and L̃ = QT PQ.
Then the term ẑT (t)(L̃⊗ Im )ẑ(t) can be reexpressed as

ẑT (t)(L̃⊗ Im )ẑ(t) = ẑT (t)
(
(QT PQ) ⊗ Im

)
ẑ(t)

= ẑT (t)
(
(QT PQQT P−1QQT PQ) ⊗ Im

)
ẑ(t)

= ẑT (t)(L̃⊗ Im )T
(
(QT P−1Q) ⊗ Im

)
(L̃⊗ Im )ẑ(t)

= êT (t)
(
(QT P−1Q) ⊗ Im

)
ê(t). (79)

From the above-mentioned inequality, the following result can
be yielded:

λmin ‖ê(t)‖2 ≤ ẑT (t)(L̃⊗ Im )ẑ(t) ≤ λmax ‖ê(t)‖2 (80)

where λmin and λmax denote the minimum and maximum eigen-
values of QT P−1Q.

IV. SIMULATION EXAMPLE

In order to further demonstrate the effectiveness of the pro-
posed formation methods, a numerical multi-agent formation
consisting of four agents is carried out. In this example, the four
agents move on the two-dimensional plane and the multi-agent
is molded by the following dynamic:

ẋi(t) = −αixi(t) −
[

0.5xi1 cos2(βixi1)
xi2 − sin2(βixi2)

]

+ ui,

i = 1, 2, 3, 4 (81)

where αi=1,2,3,4 = 0.7,−3.1, 6.5,−11 and βi=1,2,3,4 =
0.5, 0.4,−5.5,−10, respectively. The initial positions
are xi=1,2,3,4(0) = [6, 6]T , [−6, 6]T , [6,−6]T , [−6,−6]T ,
respectively.

The desired reference signal is

xd(t) = [2 sin (0.7t), 2 cos (0.7t)]T (82)

of which the initial state is xd(0) = [−1, 1]T . The formation
pattern is ηi=1,2,3,4 = [4; 4]T , [−4; 4]T , [4;−4]T , [−4;−4]T .

The adjacency matrix is

A =

⎡

⎢
⎢
⎣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎤

⎥
⎥
⎦ .

The connection weight matrix between agents and leader is
B = diag {1, 0, 0, 0}.

The identifier design: The fuzzy membership functions for
agent i, i = 1, 2, 3, 4, are chosen as

μiF j (xi) = exp

(

−
∥
∥xi − [6, 6]T + [2j − 1, 2j − 1]T

∥
∥2

2

)

j = 1, . . . , 6. (83)

Then the fuzzy basis function vector is obtained as ϕf i(xi) =

[ϕ1
f i(xi), . . . , ϕ

6
f i(xi)], where ϕjf i(xi) =

μi
F j (xi )

∑ 6
j = 1 μ

i
F j (xi )

, j =

1, . . . , 6. Based on (23), the adaptive identifier is built in

Fig. 1. Multi-agent formation performance.

the following by choosing the design parameters ki=1,2,3,4 =
24, 20, 18, 16; Γi=1,2,3,4 = 0.4I6 ; and σi=1,2,3,4 = 0.6:

˙̂xi(t) = −kix̃i(t) + Θ̂T
f i(t)ϕf i (xi) + ui,

˙̂Θf i(t) = 0.4
(
−ϕf i(xi)x̃Ti (t) − 0.6Θ̂f i(t)

)
(84)

where

˙̂Θf i(0) =
[

0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1

]T
.

The optimized formation control design: The fuzzy member-
ship functions for the distributed controller of agent i, i =
1, 2, 3, 4, are chosen as

μiF j (ei) = exp

(

−
∥
∥ei − [6, 6]T + [2j − 1, 2j − 1]T

∥
∥2

2

)

j = 1, . . . , 6. (85)

The fuzzy basis function vector is yielded as ϕi(ei) =

[ϕ1
i (ei), . . . , ϕ

6
i (ei)], where ϕji (ei) =

μi
F j (ei )

∑ 6
j = 1 μ

i
F j (ei )

. For the

actor and critic adaptive laws (55) and (56), the design
parameters are chosen as κai = 0.1 and κci = 0.2, i =
1, 2, 3, 4; the initial values for adaptive adjusting vec-
tors are Θ̂ai(0) = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T and Θ̂ci(0) =
[0.2, 0.2, 0.2, 0.2, 0.2, 0.2]T , i = 1, 2, 3, 4. The control pa-
rameters are chosen as γi=1,2,3,4 = 26, 24, 22, 20, respectively.
According to (52), the controller is described in the following:

ui = −γiêi(t) − 1
2
∂T ϕi (êi)
∂êi

Θ̂ai(t), i = 1, 2, 3, 4. (86)

Simulation results are shown in Figs. 1–6. Fig. 1 displays the
multi-agent formation performance. Fig. 2 shows the identifier
errors. The boundedness of identifier parameter matrices, critic,
and actor parameter vectors is displayed in Figs. 3–5. The cost
functions are shown in Fig. 6. The simulation results further
demonstrate that the proposed optimized formation scheme can
guarantee the control objective to be achieved.
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Fig. 2. Norm ‖x̃i‖ , i = 1, 2, 3, 4, of the adaptive identifier error.

Fig. 3. Norm
∥
∥Θ̂f i

∥
∥ , i = 1, 2, 3, 4, of the identifier parameter matrix.

Fig. 4. Norm
∥
∥Θ̂a i

∥
∥ , i = 1, 2, 3, 4, of the actor parameter vector.

Fig. 5. Norm
∥
∥Θ̂c i

∥
∥ , i = 1, 2, 3, 4, of the critic parameter vector.

Fig. 6. Cost function ri (xi , ui ), i = 1, 2, 3, 4.

V. CONCLUSION

The paper proposes an optimized control scheme for leader–
follower formation of nonlinear multi-agent systems with un-
known dynamics. In order to achieve the control objective, the
identifier–actor–critic RL algorithm is employed based on the
universal approximation property of FLS, in which the identifier
is utilized to estimate the unknown dynamic of the multi-agent
system; the actor FLS is utilized to carry out the control be-
havior; and the critic FLS is utilized to evaluate the optimizing
performance and return the evaluation to the actor training. Ac-
cording to the Lyapunov stability theory, it is proven that the
proposed scheme can achieve the control objective. Simula-
tion results display the effectiveness of the proposed control
approach.
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Optimized Backstepping for Tracking
Control of Strict-Feedback Systems

Guoxing Wen , Shuzhi Sam Ge, Fellow, IEEE, and Fangwen Tu

Abstract— In this paper, a control technique named optimized
backstepping is first proposed by implementing tracking control
for a class of strict-feedback systems, which considers optimiza-
tion as a design philosophy of the high-order system control.
The basic idea is that designing the actual and virtual controls
of backstepping is the optimized solutions of the corresponding
subsystems so that overall control of the high-order system is
optimized. In general, optimization control is designed based on
the solution of Hamilton–Jacobi–Bellman equation, but solving
the equation is very difficult due to the inherent nonlinearity
and intractability. In order to overcome the difficulty, the neural
network (NN)-based reinforcement learning strategy of actor–
critic architecture is used. In every backstepping step, the actor
and critic NNs are constructed for executing control behavior and
evaluating control performance, respectively. According to the
Lyapunov stability theorem, it is proven that the desired control
performance can be obtained. Finally, a simulation example
is carried out to further demonstrate the effectiveness of the
proposed control approach.

Index Terms— Actor–critic architecture, Lyapunov stability,
optimized backstepping (OB), strict-feedback system, tracking
control.

I. INTRODUCTION

AFTER decades of research and development, backstep-
ping has become the most common and powerful control

strategy for strictly feedback and lower triangular systems, and
it also provides a systematic theory framework for the practical
engineering [1]–[4]. Its basic idea is to construct a recursive
control by considering many state variables as “virtual control”
and designing the control laws for them so that the goals of
stabilizing and tracking are achieved by an ordered control
sequence, and then, it is proven by performing the Lyapunov
stability analysis for the entire system.

In the past decade, many representative results concerning
backstepping control have been reported, such as [5]–[9].
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In [5], a multilayer neural network (NN)-based adaptive
control for nonlinear strict-feedback systems is addressed by
using backstepping technique. In [6], an adaptive control
scheme for nonlinear strict-feedback systems is developed
by combining both dynamic surface and backstepping tech-
niques. In [7], backstepping technique is applied to consensus
tracking control of high-order nonlinear multiagent systems.
In [8] and [9], the cooperative control of high-order nonlinear
stochastic multiagent systems is investigated, and this is a
very challenging work, because the exogenous disturbances
depicted by Wiener process are considered. Finally, it is proven
that the control objective can be accomplished by applying
backstepping techniques. Although the backstepping technique
had been well developed and applied in control community,
unfortunately, all backstepping-based controls never address
the optimization problem so far. Motivated by the above-
mentioned considerations, a high-order system control tech-
nique named optimized backstepping (OB) is first proposed
by implementing tracking control for a class of strict-feedback
systems. Since the actual and virtual controls are designed
to be the optimized solutions of corresponding subsystems,
the overall control is optimized.

Ever since optimal control was formally developed about
five decades ago by Bellman [10] and Pontryagin [11],
optimization has become a fundamental principles and gained
increasing attention in modern control theory. Optimal control
means that the cost function is minimized by a control
protocol. In general, an optimal controller is designed based
on a gradient of the optimal value function, which is expected
to obtain by solving Hamilton–Jacobi–Bellman (HJB)
equation [12], and becomes Riccati equation for the linear
system. However, HJB equation is solved difficultly by
analytical approaches owing to the inherent nonlinearity and
intractability.

In the last decades, reinforcement learning (RL)-based
function approximation strategy [13] has been successfully
applied to adaptive optimization control and becomes a pop-
ular approach to solve the complex control problem. In brief,
RL is that the appropriate actions are obtained by evaluating
the feedback from the environment. One of the well-known
and effective means is actor–critic architecture, where the actor
performs certain actions by interacting with environment; the
critic evaluates the actions and returns feedback to the actor so
that the performance of subsequent actions is improved [14].
Actor–critic RL as one of the most powerful and popular
online learning approaches has been widely applied to opti-
mization control, such as [15]–[17] for continuous systems
and [18] and [19] for discrete systems.

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Based on RL, approximate dynamic programming (ADP),
which was first developed by Werbos [20], was successfully
applied to adaptive optimization control by using optimal value
function approximation (typically NN-based approximation).
In recent years, iterative ADP optimal control methods are
well investigated by using actor–critic-based approximation
methods, and several excellent research results have attracted
considerable attention [21]–[23]. The research in [21] con-
cerns with developing an online approximate solution for
continuous-time nonlinear systems by actor–critic NNs, where
both actor and critic NNs are trained simultaneously. In [22],
an integral RL algorithm of the actor–critic structure is devel-
oped to solve HJB equation for partially unknown constrained-
input systems. In [23], the problem of system parameter
uncertainties has been tackled by using an iterative actor–critic
method.

These optimization schemes have attracted considerable
attention from different research fields and have been widely
applied in practical engineering. However, the optimization
control of high-order systems is still rarely addressed, espe-
cially for tracking control because of the difficulties coming
from controller design and performance analysis. Motivated
by the above-mentioned discussions, an optimizing control
technique of high-order systems is proposed by performing
tracking control. Applying the universal approximation ability
of NNs, both the actor and critic NNs are constructed to
carry out the RL algorithm, in which actor NN is trained
for obtaining excellent system stability performance and critic
NN is tuned based on minimizing Bellman error. The main
contributions are listed in the following.

1) The proposed OB control technique can achieve the
optimized control of high-order systems by melting opti-
mization into backstepping control. The basic idea is that
every controller is designed to be the optimized solution
of corresponding subsystem, and therefore, the overall
system control is optimized.

2) The proposed optimized approach can efficiently solve
tracking control problem by segmenting an error term
from the optimal value function. Owing to the difficulty
coming from the convergence analysis of tracking errors,
existing optimization control methods rarely involve
the tracking problem. By both theory proof and com-
puter simulation, it is demonstrated that the control
scheme can steer the system output to follow the desired
trajectory.

3) Online RL is applied to backstepping control. By eval-
uating the feedback from environment and returning
the evaluation to facilitate the control, excellent control
performance can be guaranteed.

II. PRELIMINARIES

A. Background on Optimal Control

Consider the nonlinear continuous-time dynamic system
modeled in the following:

ẋ(t) = f (x) + g(x)u(x) (1)

where x(t) ∈ Rn is the state vector, u(x) ∈ Rm is the control
input, and f (x) ∈ Rn with f (0n) = 0n and g(x) ∈ Rn×m are

the vector-valued and matrix-valued functions, respectively.
The term f (x) + g(x)u(x) is assumed Lipschitz continuous
on the set � containing origin so that the solution of (1) is
unique for bounded initial state x(0) and control input u(x).
The system (1) is required stabilizable on �, i.e., there exists
the continuous control function u(x) such that the system is
asymptotically stable.

The infinite horizon value function for the dynamic
system (1) is defined as

V (x) =
∫ ∞

t
r(x(s), u(x))ds (2)

where r(x(t), u(x)) = h(x)+ uT Pu is the immediate or local
cost function, of which h(x) is a positive definite function and
h(x) = 0 if and only if x(t) = 0, and P ∈ Rm×m is a positive
definite matrix.

Definition 1 [24]: A control policy u(x) is defined as
admissible with respect to (1) on �, which is denoted by
u(x) ∈ �(�), if u(x) is continuous on � with u(0) = 0,
u(x) stabilizes (1) on �, and V (x) is finite.

The optimal control problem for system (1) is to find a
control policy u(x) ∈ �(�), such that the infinite horizon
value function (2) is minimized.

Define the Hamiltonian function corresponding to (1)
and (2) as

H (x, u, Vx) = r(x, u) + V T
x (x)ẋ(t)

= h(x) + uT (x)Pu(x) + V T
x (x)

× ( f (x) + g(x)u(x))

where Vx (x) = ∂V (x)/∂x , i.e., the gradient of function V (x)
with respect to x(t).

The optimal value function is defined as

V ∗(x) = min
u∈�(�)

(∫ ∞

t
r(x(s), u(x))ds

)

=
∫ ∞

t
r(x(s), u∗(x))ds

where u∗(x) is the optimal controller. Then, there is the
following HJB equation:

H
(
x, u∗, V ∗

x

)
= r(x, u∗) + V ∗T

x (x)ẋ(t)

= h(x) + u∗T Pu∗ + V ∗T
x (x)( f (x) + g(x)u∗) = 0 (3)

where V ∗
x (x) = ∂V ∗(x)/∂x , i.e., the gradient of V ∗(x) with

respect to x .
Assuming the solution of (3) existent and unique,

the optimal control u∗ can be obtained by solving
∂ H (x, u∗, V ∗

x )/∂u∗ = 0 as

u∗(x) = −1

2
P−1gT (x)V ∗

x (x). (4)

Substituting (4) into (3), the following result can be
obtained:
H

(
x, u∗, V ∗

x

) = h(x) + V ∗T
x f (x)

− 1

4
V ∗T

x (x)g(x)P−1gT (x)V ∗
x (x) = 0. (5)
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The gradient term V ∗
x (x) is expected to obtain by solv-

ing (5), and then, the optimal control can be got by substituting
the solution into (4). However, it is very difficult or impossible
to solve the HJB equation (5) owing to the inherent nonlinear-
ity and intricacy. In order to overcome the difficulty of solving
HJB equation, the adaptive approximation strategy using RL of
actor–critic architecture is usually considered [25].

B. Neural Networks and Function Approximation

It has been proven that NNs have excellent function approx-
imation and adaptive learning abilities. Any continuous non-
linear function ϕ(z) : Rn → Rm defined on a compact set �z

can be approximated by NNs in the following form:
ϕN N (z) = W T S(z) (6)

where W ∈ R p×m is the weight matrix and p is the neuron
number; S(z) = [s1(z), . . . , sp(z)]T is the basis function
vector, si (z) = exp[−(z − μi )

T (z − μi )/φ
2
i ], z ∈ �z ⊂ Rn ,

is the input vector, φi is the width of Gaussian function, and
μi = [μi1, . . . , μin ]T , μi j is the center of receptive field,
i = 1, 2, . . . , p, j = 1, 2, . . . , n.

Based on the NN approximation (6), the function ϕ(z) can
be redescribed in the following form:

ϕ(z) = W∗T S(z) + ε(z) (7)

where ε(z) ∈ Rm is the approximation error, which is
bounded by a positive constant δ, i.e., ‖ε(z)‖ ≤ δ; W∗ ∈
R p×m is the ideal weight, which is defined as W∗ �
arg minW∈R p×m {supz∈�z

‖ϕ(z) − W S(z)‖}. It should be men-
tioned that the ideal NN weight W∗ is an “artificial” quantity
only for analysis purpose.

It has been demonstrated that the approximation error
‖ε(z)‖ can be reduced to arbitrarily small if the neuron number
p is chosen large enough [26].

III. MAIN RESULT

A. Problem Description

Consider the following single-input single-output nonlinear
strict-feedback system:

ẋ1(t) = f1(x̄1(t)) + x2(t)

ẋ2(t) = f2(x̄2(t)) + x3(t)

. . .

ẋn(t) = fn(x̄n(t)) + u (8)

where x1 ∈ R is the system output, u ∈ R is the control input,
x̄i (t) = [x1(t), . . . , xi (t)]T ∈ Ri is the state vector, fi (x̄i ) ∈ R
with fi (0̄i ) = 0 is the continuous function, which is assumed
known and bounded, and fi (x̄i )+xi+1(t), i = 1, . . . , n−1, and
fn(x̄n) + u are assumed Lipschitz continuous and stabilizable
on the sets containing origin.

Definition 2 (Semi-Globally Uniformly Ultimately Boun-
ded [27]): Consider the nonlinear system

ẋ(t) = f (x, t)

where x(t) ∈ Rn is the state vector. Its solution is said to be
semi-globally uniformly ultimately bounded (SGUUB) if, for

x(0) ∈ �x where �x ∈ Rn is a compact set, there exist two
constants σ and T (σ, x(0)), such that ‖x(t)‖ ≤ σ is held for
all t > t0 + T (σ, x(0)).

Lemma 1 [28]: Let G(t) ∈ R be a continuous positive
function with bounded initial value G(0). If Ġ(t) ≤ −aG(t)+
c is held, where a and c are two positive constants, then there
is the following one:

G(t) ≤ e−at G(0) + c

a
(1 − e−at).

The control objective is to design the NN approximation-
based optimized control for the strict-feedback system (8),
such that: 1) all error signals of the tracking control are
SGUUB and 2) the system output x1(t) can track the ref-
erence signal yr (t) to the desired accuracy, where yr (t) is a
sufficiently smooth function and yr (t), ẏr (t), · · · , yn−1

r (t) are
bounded.

B. Optimized Backstepping Design

In this section, optimizing is integrated into the n-step
backstepping for the tracking control of the strict-feedback
system (8). Different with traditional backstepping, the pro-
posed OB control designs all virtual controls and the actual
control to be the optimized solutions of corresponding subsys-
tems, therefore the overall system control can be optimized.
In every backstepping step, the actor–critic RL algorithm is
implemented by constructing both actor and critic NNs, where
the actor NN is utilized to perform the control policy and the
critic NN is utilized to evaluate the optimization performance.

Step 1: Define the tracking error variable for the
backstepping step as z1(t) = x1(t) − yr (t). Its time derivative
along (8) is

ż1(t) = f1(x̄1(t)) + x2(t) − ẏr (t) (9)

where x2(t) is called the intermediate controller.
Viewing x2(t) as the optimal virtual control α∗

1(z1), i.e.,
x2(t) � α∗

1 (z1), the optimal value function for z1-subsystem
(9) is defined as

V ∗
1 (z1) = min

α1∈�(�z1 )

(∫ ∞

t
r1(z1(s), α1(z1))ds

)

=
∫ ∞

t
r1

(
z1(s), α

∗
1 (z1)

)
ds (10)

where r1(z1, α1) = z2
1(t) + α2

1(z1) is the cost function,
α1(z1) is the virtual controller, and �z1 is a compact set con-
taining origin. The optimal value function can be decomposed
into the following two terms:

V ∗
1 (z1) = β1z2

1(t) − β1z2
1(t) + V ∗

1 (z1)

= β1z2
1(t) + V o

1 (z1) (11)

where β1 is the positive design constant and V o
1 (z1) ∈ R is a

continuous scalar-value function.
Remark 1: The decomposed term β1z2

1(t)of (11), which
will be made in every step later, aims to achieve the tracking
control for the subsystem. Although most existing optimization
control methods, such as [15]–[17], can guarantee state bound-
edness and system stability, few research results address track-
ing control problems. In the design, by segmenting the error
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term β1z2
1(t) from the optimal value function and choosing

the appropriate parameter β1, the desired tracking performance
can be achieved. The method can also be easily extended to
multidimensional systems by changing the term β1z2

1(t) to
norm expression.

Based on the error dynamic (9), HJB equation of the
z1-subsystem is

H1

(
z1, α

∗
1 ,

∂V ∗
1

∂z1

)

= r1
(
z1, α

∗
1

) + ∂V ∗
1 (z1)

∂z1
ż(t)

= z2
1(t) + α∗2

1 (z1) +
(

2β1z1(t) + ∂V o
1 (z1)

∂z1

)

×(
f1(x̄1) + α∗

1 (z1) − ẏr (t)
) = 0. (12)

By solving ∂ H1/∂α∗
1 = 0, the optimal control α∗

1 is

α∗
1 (z1) = −β1z1(t) − 1

2

∂V o
1 (z1)

∂z1
. (13)

Since the term ∂V o
1 (z1)/∂z1 is continuous on the compact

set �z1 , it can be approximated by NN as

∂V o
1 (z1)

∂z1
= W∗T

1 S1(z1) + ε1(z1) (14)

where W∗
1 ∈ Rm1 is the ideal weight, S1(z1) ∈ Rm1 is the

basis function vector, and ε1(z1) ∈ R is the approximation
error, which is bounded by a constant δ1, i.e., |ε1(z1)| ≤ δ1.

Using (14), the gradient term ∂V ∗
1 (z1)/∂z1 and the optimal

controller α∗
1 (z1) become

∂V ∗
1 (z1)

∂z1
= 2β1z1(t) + W∗T

1 S1(z1) + ε1(z1) (15)

α∗
1 (z1) = −β1z1(t) − 1

2

(
W∗T

1 S1(z1) + ε1(z1)
)
. (16)

Substituting (14) and (16) into (12), the following equation
can be obtained:

H1
(
z1, α

∗
1 , W∗

1

)
= −(

β2
1 − 1

)
z2

1(t) + 2β1z1(t)( f1(x̄1) − ẏr (t))

+ W∗T
1 S1(z1)( f1(x̄1(t)) − ẏr (t) − β1z1(t))

− 1

4
W∗T

1 S1(z1)ST
1 (z1)W∗

1 + ε1(t) = 0 (17)

where ε1(t) = ε1(z1)( f1(x̄1) − ẏr (t) + α∗
1 ) + (1/4)ε2

1(z1) is
bounded, because all its terms are bounded.

Since the ideal weight W∗
1 is an unknown constant vector,

the optimal virtual control (16) cannot be applied directly.
In order to obtain the available control, the actor–critic
RL algorithm is constructed, where the critic and actor
NNs are given in the following:

∂ V̂ ∗
1

∂z1
= 2β1z1(t) + ∂ V̂ o

1

∂z1
= 2β1z1(t) + Ŵ T

c1(t)S1(z1) (18)

α̂1(z1) = −β1z1(t) − 1

2
Ŵ T

a1(t)S1(z1) (19)

where V̂ ∗
1 (z1) and V̂ o

1 (z1) are the estimations of V ∗
1 (z1) and

V o
1 (z1), respectively; Ŵ T

c1(t) ∈ Rm1 and Ŵ T
a1(t) ∈ Rm1 are the

critic and actor NN weights, respectively.

By substituting (18) and (19) into (12), the approximated
HJB equation can be obtained in the following:
H1(z1, α̂1, Ŵc1)

= z2
1(t) +

(
−β1z1(t) − 1

2
Ŵ T

a1S1(z1)

)2

+(
2β1z1(t) + Ŵ T

c1S1(z1)
) (

−β1z1(t) − 1

2
Ŵ T

a1(t)S1(z1)

+ f1(x̄1) − ẏr (t)

)
. (20)

Using the HJB equation (17) and its approximation (20),
Bellman residual error e1(t) is yielded as

e1(t) = H1(z1, α̂1, Ŵc1) − H1
(
z1, α

∗
1 , W∗

1

)
= H1(z1, α̂1, Ŵc1). (21)

Define a positive definite function of the error e1(t) as

E1(t) = 1

2
e2

1(t). (22)

In order to minimize the Bellman error (21), the following
critic NN updating law is obtained by using the gradient
descent algorithm:

˙̂Wc1(t) = − γc1

‖ω1(t)‖2 + 1

∂ E1(t)

∂Ŵc1

= − γc1

‖ω1‖2 + 1
ω1(t)

×
(

ωT
1 (t)Ŵc1(t) − (

β2
1 − 1

)
z2

1(t) + 2β1z1

× ( f1(x̄1) − ẏr ) + 1

4
Ŵ T

a1S1(z1)ST
1 (z1)Ŵa1

)

(23)

where γc1 > 0 is the learning rate and ω1(t) = S1(z1)
( f1(x̄1) − β1z1(t) − (1/2)Ŵ T

a1(t)S1(z1) − ẏr ) ∈ Rm1 .
Based on the system stability analysis, the actor NN weight

updating law is designed as follows:
˙̂Wa1(t) = 1

2
S1(z1)z1(t) − γa1S1(z1)ST

1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2 + 1)
S1(z1)ST

1 (z1)Ŵa1(t)ω
T
1 (t)Ŵc1(t)

(24)

where γa1 > 0 is the learning rate.
For obtaining the desired control performance, the following

assumption is required.
Assumption 1 (Persistence of Excitation [21]): The signs of

ωi (t)ωT
i (t), i = 1, 2, . . . , n, satisfy the following persistence

of excitation (PE) condition over the interval [t, t + t i ] with
all t values:

ηi Imi ≤ ωi (t)ω
T
i (t) ≤ ζi Imi (25)

where ηi > 0, ζi > 0, t i > 0, and Imi ∈ Rmi ×mi is the identity
matrix.

Defining the error variable z2(t) = x2(t)− α̂1(z1), the error
dynamic (9) can be rewritten as

ż1(t) = f1(x̄1) + z2(t) + α̂1(z1) − ẏr (t). (26)
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Consider the following Lyapunov function candidate for the
z1-subsystem:

L1(t) = 1

2
z2

1(t) + 1

2
W̃ T

a1(t)W̃a1(t) + 1

2
W̃ T

c1(t)W̃c1(t)

where W̃c1(t) = Ŵc1(t)− W∗
1 and W̃a1(t) = Ŵa1(t)− W∗

1 are
the critic and actor NN estimation errors.

The time derivative of L1(t) along (23), (24), and (26) is

L̇1(t) = z1(t)( f1(x̄1) + z2(t) + α̂1(z1) − ẏr (t)) + W̃ T
a1(t)

×
(

1

2
S1(z1)z1(t) − γa1S1(z1)ST

1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2+1)
S1(z1)ST

1 (z1)Ŵa1(t)ω
T
1 (t)Ŵc1(t)

)

− γc1

‖ω1‖2 + 1
W̃ T

c1(t)ω1

×
(

ωT
1 Ŵc1(t) − (

β2
1 − 1

)
z2

1(t)

+ 2β1z1(t)( f1(x̄1) − ẏr (t)) + 1

4
Ŵ T

a1(t)S1(z1)

× ST
1 (z1)Ŵa1(t)

)
. (27)

Executing the optimized controller (19) to (27) yields

L̇1(t) = z1(t)z2(t) − β1z2
1(t) − 1

2
z1(t)Ŵ T

a1(t)S1(z1)

+ 1

2
W̃ T

a1(t)S1(z1)z1 − γa1W̃ T
a1(t)S1(z1)ST

1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2+1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

‖ω1‖2 + 1
W̃ T

c1(t)ω1

×
(

ωT
1 Ŵc1(t) − (

β2
1 − 1

)
z2

1(t)

+ 2β1z1(t)( f1(x̄1) − ẏr )+ 1

4
Ŵ T

a1(t)S1(z1)ST
1 (z1)

× Ŵa1(t)

)
+ z1(t) f1(x̄1) − z1(t)ẏr . (28)

Based on the fact W̃a1(t) = Ŵa1(t) − W∗
1 , there are the

following equations:
W̃ T

a1(t)S1(z1)z1 − z1Ŵ T
a1(t)S1(z1)

= −z1(t)W∗T
1 S1(z1),

γa1W̃ T
a1(t)S1(z1)ST

1 (z1)Ŵa1(t)

= γa1

2
W̃ T

a1(t)S1(z1)ST
1 (z1)W̃a1(t) + γa1

2
Ŵ T

a1(t)S1(z1)

× ST
1 (z1)Ŵa1(t) − γa1

2
W∗T

1 S1(z1)ST
1 (z1)W∗

1 .

Inserting the above-mentioned results into (28) yields

L̇1(t)

= −β1z2
1(t) + z1(t)z2(t) − 1

2
z1(t)W∗T

1 S1(z1)

− γa1

2
W̃ T

a1(t)S1(z1)ST
1 (z1)W̃a1(t) − γa1

2
Ŵ T

a1(t)

× S1(z1)ST
1 (z1)Ŵa1(t) + γa1

2
W∗T

1 S1(z1)ST
1 (z1)W∗

1

+ γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

‖ω1(t)‖2 + 1
W̃ T

c1(t)ω1

×
(

ωT
1 Ŵc1(t) − (

β2
1 − 1

)
z2

1(t) + 2β1z1(t)( f1(x̄1) − ẏr )

+1

4
Ŵ T

a1S1(z1)ST
1 (z1)Ŵa1

)
+ z1(t) f1(x̄1) − z1(t)ẏr .

(29)

According to Young’s inequality ab ≤ (a2/2) + (b2/2),
there are the following results:

z1(t)z2(t) ≤ z2
1(t) + z2

2(t)

z1(t) f1(x̄1) ≤ 1

2
z2

1(t) + 1

2
f 2
1 (x̄1)

−z1(t)ẏr (t) ≤ 1

2
z2

1(t) + 1

2
ẏ2

r (t)

−1

2
z1(t)W∗T

1 S1(z1) ≤ z2
1(t) + 1

2

(
W∗T

1 S1(z1)
)2

.

Adding the above-mentioned inequalities to (29) has

L̇1(t) ≤ z2
2(t) − (β1 − 3)z2

1(t) − γa1

2
W̃ T

a1(t)S1(z1)

×ST
1 (z1)W̃a1(t) − γa1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

‖ω1‖2 + 1
W̃ T

c1(t)ω1

×
(

ωT
1 Ŵc1(t) − (

β2
1 − 1

)
z2

1(t) + 2β1z1( f1(x̄1) − ẏr )

+1

4
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)

)

+ 1

2
f 2
1 (x̄1) + 1

2
ẏ2

r + γa1 + 1

2

(
W∗T

1 S1(z1)
)2

. (30)

Considering the following equation derived from (17):
−(

β2
1 − 1

)
z2

1 + 2β1z1( f1(x̄1) − ẏr )

= −ωT
1 W∗

1 − 1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)W∗

1

+ 1

4
W∗T

1 S1(z1)ST
1 (z1)W∗

1 − ε1(t) (31)

(30) can become

L̇1(t) ≤ z2
2(t) − (β1 − 3)z2

1(t) − γa1

2
W̃ T

a1(t)S1(z1)

×ST
1 (z1)W̃a1(t) − γa1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

‖ω1(t)‖2 + 1
W̃ T

c1(t)ω1(t)

×
(

ωT
1 (t)W̃c1(t) − 1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)W∗

1

+1

4
W∗T

1 S1(z1)ST
1 (z1)W∗

1

+1

4
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t) − ε1(t)

)

+1

2
f 2
1 (x̄1) + 1

2
ẏ2

r (t) + γa1 + 1

2

(
W∗T

1 S1(z1)
)2

. (32)
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Inserting the facts that

−1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)W∗

1 + 1

4
W∗T

1 S1(z1)ST
1 (z1)W∗

1

+ 1

4
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)

= 1

4
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)

−1

4
W∗T

1 S1(z1)ST
1 (z1)W̃a1(t),

γc1

‖ω1‖2 + 1
W̃ T

c1(t)ω1(t)ε1(t)

≤ γc1

2(‖ω1‖2 + 1)
W̃ T

c1(t)ω1(t)ω
T
1 (t)W̃c1(t)

+ γc1

2(‖ω1‖2 + 1)
ε2

1 (t) (33)

into (32), there is the following one:
L̇1(t) ≤ −(β1 − 3)z2

1(t) + z2
2(t) − γa1

2
W̃ T

a1(t)S1(z1)

×ST
1 (z1)W̃a1(t) − γc1

2(‖ω1‖2 + 1)
W̃ T

c1(t)ω1ω
T
1 W̃c1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

4(‖ω1‖2 + 1)
W̃ T

c1(t)ω1W̃ T
a1(t)S1(z1)ST

1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

c1(t)ω1W∗T
1 S1(z1)ST

1 (z1)W̃a1(t)

−γa1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t) + 1

2
f 2
1 (x̄1) + 1

2
ẏ2

r

+γa1 + 1

2

(
W∗T

1 S1(z1)
)2 + γc1

2
ε2

1 (t). (34)

Substituting the following fact:
γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t)ω

T
1 Ŵc1(t)

− γc1

4(‖ω1‖2 + 1)
W̃ T

c1(t)ω1W̃ T
a1(t)S1(z1)ST

1 (z1)Ŵa1(t)

= γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)Ŵ T
c1(t)ω1 ST

1 (z1)Ŵa1(t)

− γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)W̃ T
c1(t)ω1 ST

1 (z1)Ŵa1(t)

= γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)W∗T
1 ω1ST

1 (z1)Ŵa1(t)

into inequality (34) yields

L̇1(t) ≤ −(β1 − 3)z2
1(t) + z2

2(t) − γa1

2
W̃ T

a1(t)S1(z1)

× ST
1 (z1)W̃a1(t) − γc1

2(‖ω1‖2 + 1)
W̃ T

c1(t)ω1ω
T
1 W̃c1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)W∗T
1 ω1ST

1 (z1)Ŵa1(t)

+ γc1

4(‖ω1‖2 + 1)
W̃ T

c1(t)ω1W∗T
1 S1(z1)ST

1 (z1)W̃a1(t)

− γa1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t) + 1

2
f 2
1 (x̄1) + 1

2
ẏ2

r

+ γa1 + 1

2

(
W∗T

1 S1(z1)
)2 + γc1

2
ε2

1 (t). (35)

According to Young’s inequality and Cauchy inequality,
there are the following results:

γc1

4(‖ω1‖2 + 1)
W̃ T

a1(t)S1(z1)W∗T
1 ω1(t)ST

1 (z1)Ŵa1(t)

≤ 1

32
W̃ T

a1(t)S1(z1)W∗T
1 ω1ω

T
1 W∗

1 ST
1 (z1)W̃a1(t)

+ γ 2
c1

2
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t),

γc1

4(‖ω1‖2 + 1)
W̃ T

c1(t)ω1(t)W∗T
1 S1(z1)ST

1 (z1)W̃a1(t)

≤ γ 2
c1

2
W̃ T

a1(t)S1(z1)ST
1 (z1)W̃a1(t) + 1

32(‖ω1‖2 + 1)

× W̃ T
c1(t)ω1W∗T

1 S1(z1)ST
1 (z1)W∗

1 ωT
1 W̃c1(t).

Applying the above-mentioned inequalities to (35) has

L̇1(t) ≤ z2
2(t) − (β1 − 3)z2

1(t)

−
(

γa1

2
− γ 2

c1

2
− 1

32
W∗T

1 ω1ω
T
1 W∗

1

)

× W̃ T
a1(t)S1(z1)ST

1 (z1)W̃a1(t)

− 1

‖ω1‖2 + 1

(
γc1

2
− 1

32
W∗T

1 S1(z1)ST
1 (z1)W∗

1

)

×W̃ T
c1(t)ω1ω

T
1 W̃c1(t) −

(
γa1

2
− γ 2

c1

2

)
Ŵ T

a1(t)

×S1(z1)ST
1 (z1)Ŵa1(t) + 1

2
f 2
1 (x̄1) + 1

2
ẏ2

r (t)

+ γa1 + 1

2

(
W∗T

1 S1(z1)
)2 + γc1

2
ε2

1 (t). (36)

Rewrite (36) to compact form as

L̇1(t) ≤ −ξT
1 (t)A1(t)ξ1(t) + C1(t) + z2

2(t)

−
(

γa1

2
− γ 2

c1

2

)
Ŵ T

a1(t)S1(z1)ST
1 (z1)Ŵa1(t) (37)

where ξ1(t), A1(t), and C1 are shown at the top of the next
page.

Because the PE condition is held (Assumption 1), the diago-
nal matrix A1(t) can be made positive definite by designing the
parameters β1, γc1, and γa1 to satisfy the following conditions:

β1 > 3, γa1 > γ 2
c1 + ζ1

16
W∗T

1 W∗
1

γc1 >
1

16
sup
t≥0

{
λmax

{
W∗T

1 S1(z1)ST
1 (z1)W∗

1

}}
. (38)

Remark 2 It should be mentioned that the unknown con-
stant matrix W∗

1 is only for analysis purpose. The condi-
tion (38) implies that the matrix A1(t) can be made positive
definition.
Then, (37) can become the following one:

L̇1(t) < −a1‖ξ1(t)‖2 + c1 + z2
2(t)

where a1 = inf t≥0{λmin{A1(t)}}, c1 = supt≥0{C1(t)}.
Step i (i = 2, . . . , n − 1): Define the tracking error variable

for the i th step as zi (t) = xi (t) − α̂i−1(zi−1). Based on the
system dynamic (8), the error dynamic for zi -subsystem is

żi (t) = fi (x̄i ) + xi+1(t) − ˙̂αi−1(zi−1). (39)
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ξ1(t) = [
z1(t), W̃ T

a1(t), W̃ T
c1(t)

]T

A1(t) =

⎡
⎢⎢⎢⎢⎢⎣

β1 − 3 0 0

0

(
γa1

2
− γ 2

c1

2
− 1

32
W∗T

1 ω1ω
T
1 W∗

1

)
S1(z1)ST

1 (z1) 0

0 0
1

‖ω1(t)‖2 + 1

(
γc1

2
− 1

32
W∗T

1 S1(z1)ST
1 (z1)W∗

1

)
ω1(t)ωT

1 (t)

⎤
⎥⎥⎥⎥⎥⎦

C1 = 1

2
f 2
1 (x̄1) + 1

2
ẏ2

r (t) + γa1 + 1

2

(
W∗T

1 S1(z1)
)2 + γc1

2
ε2

1 (t)

Viewing xi+1(t) as the optimal virtual control input α∗
i (zi ),

the optimal value function for zi -subsystem is defined as

V ∗
i (zi ) = min

αi∈�(�zi )

(∫ ∞

t
ri (zi (s), αi (zi ))ds

)

=
∫ ∞

t
ri

(
zi (s), α

∗
i (zi )

)
ds

where ri (zi , αi ) = z2
i (t)+α2

i (zi ) is the cost function, αi is the
virtual controller, and �zi is a compact set containing origin.
The optimal value function V ∗

i (zi ) is reexpressed as

V ∗
i (zi ) = βi z

2
i (t) + V o

i (zi )

where βi is a positive constant and V o
i (zi ) = −βi z2

i (t) +
V ∗

i (zi ) is a continuous scalar function.
The HJB equation for zi -subsystem is

Hi

(
zi , α

∗
i ,

∂V ∗
i

∂zi

)
= z2

i + α∗2
i +

(
2βi zi + ∂V o

i (zi )

∂zi

)

× (
fi (x̄i) + α∗

i (zi ) − ˙̂αi−1(zi−1)
) = 0.

(40)

Then, the optimal controller α∗
i (zi ) can be get by solving the

equation ∂ Hi/∂α∗
i = 0

α∗
i (zi ) = −βi zi (t) − 1

2

∂V o
i (zi )

∂zi
. (41)

For any zi ∈ �zi , ∂V o
i (zi )/∂zi can be approximated

by NN as

∂V o
i (zi )

∂zi
= W∗T

i Si (zi ) + εi (zi ) (42)

where W∗T
i ∈ Rmi is the ideal weight, Si (zi ) ∈ Rmi is the

basis function vector, and εi (zi ) ∈ R is the approximation
error, which is bounded by a constant δi , i.e., |εi (zi )| ≤ δi .

The gradient term ∂V ∗
i (zi )/∂zi and the optimal controller

α∗
i (zi ) can be redescribed as

∂V ∗
i (zi )

∂zi
= 2βi zi (t) + W∗T

i Si (zi ) + εi(zi ) (43)

α∗
i (zi ) = −βi zi (t) − 1

2

(
W∗T

i Si (zi ) + εi (zi )
)
. (44)

Substituting (42) and (44) into (40), the following one can be
obtained:
Hi

(
zi , α

∗
i , W∗

i

) = −(β2
i − 1)z2

i (t) + 2βi zi (t)( fi (x̄i ) − ˙̂αi−1)

+ W∗T
i Si (zi )( fi (x̄i ) − ˙̂αi−1 − βi zi (t))

− 1

4
W∗T

i Si (zi )ST
i (zi )W∗

i +εi (t) = 0 (45)

where εi (t) = εi (zi )( fi (x̄i )− ˙̂αi−1 +α∗
i )+ (1/4)ε2

i (zi ), which
is bounded because all terms are bounded.

The optimal controller (41) is unavailable, because the ideal
weight W∗

i is unknown, and in order to obtain the valid
controller, the actor–critic RL is used, where the critic and
actor NNs are designed as

∂ V̂ ∗
i (zi )

∂zi
= 2βi zi (t) + ∂ V̂ o

i (zi )

∂zi
= 2βi zi (t) + Ŵ T

ci (t)Si (zi )

α̂i (zi ) = −βi zi (t) − 1

2
Ŵ T

ai (t)Si (zi ) (46)

where V̂ ∗
i (zi ) and V̂ o

i (zi ) are the estimations of V ∗
i (zi ) and

V o
i (zi ), respectively; Ŵ T

ci (t) ∈ Rmi and Ŵ T
ai (t) ∈ Rmi are the

critic and actor NN weights, respectively.
Remark 3 The boundedness of ˙̂αi−1, i = 1, . . . , n,

is proven in the following.
Based on (39) and (46), the time derivative ˙̂αi−1,

i = 2, . . . , n, can be expressed as

˙̂αi−1(t) = −βi−1( fi−1(x̄i−1) + xi (t) − ˙̂αi−2(zi−2))

− 1

2

( ˙̂W T
a(i−1)Si−1(zi−1) + Ŵ T

a(i−1) Ṡi−1(zi−1)
)
.

(47)

Since these terms fi−1(x̄i−1) + xi(t), i = 1, . . . , n, are
Lipschitz continuous, they are bounded for zi ∈ �zi .
Starting from ˙̂α1 = −β1( f1(x̄1) + x2(t) − ẏr ) − (1/2)

(
˙̂W T

a1(t)S1(z1) + Ŵ T
a1(t)Ṡ1(z1)) that is bounded, it can be

successively proved that ˙̂αi−1, i = 3, . . . , n, are bounded by
using (47). �

The approximated HJB equation for zi -subsystem is

Hi(zi , α̂i , Ŵci )

= z2
i (t) +

(
−βi zi (t) − 1

2
Ŵ T

ai (t)Si (zi )

)2

+ (
2βi zi (t) + Ŵ T

ci (t)Si (zi )
) (

−βi zi (t) − 1

2
Ŵ T

ai (t)Si (zi )

+ fi (x̄i ) − ˙̂αi−1(zi−1)

)
.

The Bellman residual error is yielded as ei (t) =
Hi(zi , α̂i , Ŵci ). Define the positive definite function as
Ei (t) = (1/2)e2

i (t). The critic NN weight updating law is
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designed by using gradient descent algorithm

˙̂Wci (t) = − γci

‖ωi (t)‖2 + 1
ei (t)

∂ei (t)

∂Ŵci (t)
= − γci

‖ωi (t)‖2 + 1
ωi (t)

×
(

ωT
i (t)Ŵci (t) − (

β2
i − 1

)
z2

i (t)

+2βi zi ( fi (x̄i)− ˙̂αi−1)+ 1

4
Ŵ T

ai Si (zi )ST
i (zi )Ŵai

)

(48)

where γci > 0 is the learning rate and ωi (t) = Si (zi )( fi (x̄i )−˙̂αi−1 − βi zi (t) − (1/2)Ŵ T
ai (t)Si (zi )) ∈ Rmi .

The actor NN weight law is designed based on the stability
analysis

˙̂Wai (t) = 1

2
Si (zi )zi (t) − γai Si (zi )ST

i (zi )Ŵai (t)

+ γci

4(‖ωi‖2 + 1)
Si (zi )ST

i (zi )Ŵai (t)ω
T
i (t)Ŵci (t)

(49)

where γai > 0 is the learning rate.
Using the error variable zi+1(t) = xi+1(t)−α̂i (zi ), the error

dynamic (39) can be rewritten as
żi (t) = fi (x̄i (t)) + zi+1(t) + α̂i (zi ) − ˙̂αi−1(zi−1). (50)

Consider the following Lyapunov function candidate for
zi -subsystem:

Li (t) =
i−1∑
k=1

Lk(t) + 1

2
z2

i + 1

2
W̃ T

ai (t)W̃ai (t) + 1

2
W̃ T

ci (t)W̃ci (t)

where W̃ci (t) = Ŵci (t) − W∗
i and W̃ai (t) = Ŵai (t) − W∗

i are
the critic and actor NN estimation errors.

Based on (48), (49), and (50), the time derivative of Li (t)
is

L̇i (t)

=
i−1∑
k=1

L̇k(t) + zi ( fi (x̄i) + zi+1 − ˙̂αi−1 + α̂i )

−W̃ T
ai (t)

(
1

2
Si (zi )zi (t) + γai Si (zi )ST

i (zi )Ŵai (t)

− γci

4(‖ωi‖2+1)
Si (zi )ST

i (zi )Ŵai (t)ω
T
i (t)Ŵci (t)

)

− γci

‖ωi‖2 + 1
W̃ T

ci (t)ωi

×
(

ωT
i Ŵci (t) − (

β2
i − 1

)
z2

i (t)

+ 2βi zi (t)( fi (x̄i ) − ˙̂αi−1(zi−1)) + 1

4
Ŵ T

ai (t)Si (zi )

× ST
i (zi )Ŵai (t)

)
.

Similar to step 1, the following result can be derived:

L̇i (t) ≤
i−1∑
k=1

L̇k(t) + z2
i+1 − (βi − 3)z2

i

−
(

γai

2
− γ 2

ci

2
− 1

32
W∗T

i ωiω
T
i W∗

i

)

× W̃ T
ai (t)Si (zi )ST

i (zi )W̃ai (t)

− 1

‖ωi‖2 + 1

(
γci

2
− 1

32
W∗T

i Si (zi )ST
i (zi )W∗

i

)

× W̃ T
ci (t)ωi (t)ω

T
i (t)W̃ci (t) −

(
γai

2
− γ 2

ci

2

)
Ŵ T

ai (t)

× Si (zi )ST
i (zi )Ŵai (t) + 1

2
f 2
i (x̄i ) + 1

2
˙̂α2

i−1(zi−1)

+ γai + 1

2

(
W∗T

i Si (zi )
)2 + γci

2
ε2

i (t). (51)

Using results of the first i − 1 steps, the inequality (51) is
rewritten as

L̇i (t) ≤
i−1∑
k=1

(
−ak ‖ξk(t)‖2 + ck

)
+ z2

i+1(t) − ξT
i (t)Ai (t)ξi (t)

+Ci (t) −
(

γai

2
− γ 2

ci

2

)
Ŵ T

ai (t)Si (zi )ST
i (zi )Ŵai (t)

where ξi (t), Ai (t), and Ci (t) are shown at the top of the next
page.

Based on Assumption 1, the matrix Ai (t) can be positive
definite by choosing the parameters βi , γci , and γai satisfying
the following conditions:

βi > 4, γai > γ 2
ci + ζi

16
W∗T

i W∗
i

γci >
1

16
sup
t≥0

{
λmax

{
W∗T

i Si (zi )ST
i (zi )W∗

i

}}
. (52)

Then, there is the following inequality:

L̇i (t) <

i∑
k=1

(−ak ‖ξk(t)‖2 + ck) + z2
i+1(t)

where ak = inf t≥0{λmin{Ak(t)}} and ck = supt≥0{Ck(t)}.
Step n: In the final step of the backstepping control,

the actual controller u will be derived. Defining the tracking
error variable for the nth step as zn(t) = xn(t) − α̂n−1(zn−1),
based on the system dynamic (8), the error dynamic is

żn(t) = fn(x̄n(t)) + u − ˙̂αn−1(zn−1). (53)

The optimal value function is defined as

V ∗
n (zn) = min

u∈�(�zn )

(∫ ∞

t
rn(zi (s), u(zn))ds

)

=
∫ ∞

t
rn(zn(s), u∗(zn))ds

where rn(zn, u) = z2
n(t) + u2 is the cost function, u∗ is the

optimal actual control, and �zn is a compact set containing
origin. Rewrite the optimal value function as

V ∗
n (zn) = βnz2

n(t) + V o
n (zn) (54)

where βn is a positive constant and V o
n (zn) = −βnz2

n(t) +
V ∗

n (zn) is a continuous scalar function.
The HJB equation for the subsystem is

Hn

(
zn, u∗, ∂V ∗

n

∂zn

)
= z2

n(t) + u∗2 +
(

2βnzn(t) + ∂V o
n

∂zn

)

× ( fn(x̄n) − ˙̂αn−1(zn−1) + u∗) = 0.

(55)
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ξi (t) = [
zi (t), W̃ T

ai (t), W̃ T
ci (t)

]T

Ai (t) =

⎡
⎢⎢⎢⎢⎢⎣

βi −4 0 0

0

(
γai

2
− γ 2

ci

2
− 1

32
W∗T

i ωi (t)ωT
i (t)W∗

i

)
Si (zi )ST

i (zi ) 0

0 0
1

‖ωi (t)‖2+1

(
γci

2
− 1

32
W∗T

i Si (zi )ST
i (zi )W∗

i

)
ωi (t)ωT

i (t)

⎤
⎥⎥⎥⎥⎥⎦

Ci (t) = γai + 1

2

(
W∗T

i Si (zi )
)2 + 1

2
f 2
i (x̄i ) + 1

2
˙̂α2

i−1 + γci

2
ε2

i (t)

The optimal control u∗(zn) can be got by solving ∂ Hn/∂u∗ =0

u∗(zn) = −βnzn(t) − 1

2

∂V o
n (zn)

∂zn
. (56)

For any zn ∈ �zn , the uncertain term ∂V o
n (zn(t))/∂zn is

approximated as

∂V o
n (zn)

∂zn
= W∗T

n Sn(zn) + εn(zn) (57)

where W∗
n ∈ Rmn is the ideal weight, Sn(zn) ∈ Rmn is the

basis function vector, εn(zn) ∈ R is the approximation error
satisfying |εn(zn)| ≤ δn , and δn is a positive constant.

The gradient term ∂V ∗
n (zn)/∂zn and the optimal controller

u∗(zn) can be redescribed as

∂V ∗
n (zn)

∂zn
= 2βnzn(t) + W∗T

n Sn(zn) + εn(zn) (58)

u∗(zn) = −βnzn(t) − 1

2

(
W∗T

n Sn(zn) + εn
)
. (59)

Substituting (57) and (59) into (55), the following one can
be obtained:
Hn(zn, u∗, W∗

n ) = −(
β2

n −1
)
z2

n(t) + 2βnzn(t)( fn(x̄n)− ˙̂αn−1)

+ W∗T
n Sn(zn)( fn(x̄n) − ˙̂αn−1 − βnzn(t))

−1

4
W∗T

n Sn(zn)ST
n (zn)W∗

n + εn(t) = 0

where εn(t) = εn(zn)( fn(x̄n)− ˙̂αn−1+u∗)+(1/4)ε2
n(zn), which

is a bounded term.
The following critic and actor NNs are designed to imple-

ment the RL iteration for the optimized control:
∂ V̂ ∗

n (zn)

∂zn
= 2βnzn + ∂ V̂ o

n (zn)

∂zn
= 2βnzn(t) + Ŵ T

cn(t)Sn(zn)

u = −βnzn(t) − 1

2
Ŵ T

an(t)Si (zn) (60)

where V̂ ∗
n (zn) and V̂ o

n (zn) are the estimations of V ∗
n (zn) and

V o
n (zn), respectively; Ŵ T

cn(t) ∈ Rmn and Ŵ T
an(t) ∈ Rmn are

the critic and actor NN weights, respectively.
The approximated HJB equation is

Hn(zn, u, Ŵcn)

= z2
n +

(
−βnzn − 1

2
Ŵ T

an(t)Sn(zn)

)2

+ (
2βnzn + Ŵ T

cn(t)Sn(zn)
)

×
(

fn(x̄n) − ˙̂αn−1 − βnzn(t) − 1

2
Ŵ T

an(t)Sn(zn)

)
.

The Bellman residual error is en(t) = Hn(zn, u, Ŵcn). Defin-
ing the positive definite function as En(t) = (1/2)e2

n(t),
the following critic NN weight updating law is derived by
using the gradient descent algorithm:

˙̂Wcn(t) = − γcn

‖ωn(t)‖2 + 1
en(t)

∂en(t)

∂Ŵcn(t)

= − γcn

‖ωn(t)‖2 + 1
ωn

×
(

ωT
n Ŵcn(t) − (βn − 1)z2

n(t)

+ 2βnzn(t)( fn(x̄n) − ˙̂αn−1) + 1

4
Ŵ T

an(t)Sn(zn)

× ST
n (zn)Ŵan(t)

)
(61)

where γcn > 0 are the learning rate and ωn(t) =
Sn(zn)( fn(x̄n) − ˙̂αn−1(zn−1) − βnzn(t) − (1/2)Ŵ T

an(t)Sn(zn)).
The actor weight updating law based on the stability analy-

sis is given in the following:
˙̂Wan(t) = 1

2
Sn(zn)zn(t) − γan Sn(zn)ST

n (zn)Ŵan(t)

+ γcn

4(‖ωn(t)‖2 + 1)
Sn(zn)ST

n (zn)Ŵanω
T
n Ŵcn (62)

where γan > 0 are the learning rate.
Consider the overall Lyapunov function candidate for the

final step as

L(t) =
n−1∑
k=1

Lk(t) + 1

2
z2

n + 1

2
W̃ T

an(t)W̃an(t) + 1

2
W̃ T

cn(t)W̃cn(t)

where W̃cn(t) = Ŵcn(t)− W∗
n and W̃an(t) = Ŵan(t)− W∗

n are
the critic and actor NN estimation errors, respectively.

Similar to the first n − 1 steps, the time derivative of L(t)
along (53), (61) and (62) satisfies

L̇(t) ≤
n−1∑
k=1

L̇k(t) − (βn − 3)z2
n(t)

−
(

γan

2
− γ 2

cn

2
− 1

32
W∗T

n ωnω
T
n W∗

n

)

× W̃ T
an(t)Sn(zn)ST

n (zn)W̃an(t)

− 1

‖ωn‖2 + 1

(
γci

2
− 1

32
W∗T

n Sn(zn)ST
n (zn)W∗

n

)

× W̃ T
cn(t)ωnωT

n W̃cn(t) −
(

γan

2
− γ 2

cn

2

)
Ŵ T

an(t)
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× Sn(zn)ST
n (zn)Ŵan(t) + 1

2
f 2
n (x̄n) + 1

2
˙̂α2

n−1

+ γan + 1

2

(
W∗T

n Sn(zn)
)2 + γcn

2
ε2

n (t). (63)

By using the results of previous steps, the inequality (63)
is rewritten as

L̇(t) ≤
n−1∑
k=1

(
−ak ‖ξk(t)‖2 + ck

)
− ξT

n (t)An(t)ξn(t) + Cn(t)

−
(

γan

2
− γ 2

cn

2

)
Ŵ T

an(t)Sn(zn)ST
n (zn)Ŵan(t)

where ξn(t), An(t), and Cn(t) are shown at the bottom of the
this page.

Based on the PE assumption, the matrix An(t) can be made
positive definite by satisfying the following conditions:

βn > 4, γan > γ 2
cn + ζn

16
W∗T

n W∗
n

γcn >
1

16
sup
t≥0

{
λmax

{
W∗T

n Sn(zn)ST
n (zn)W∗

n

}}
. (64)

Let an = inf
t≥0

{λmin{An(t)}} and cn = sup
t≥0

{Cn(t)}, the fol-

lowing result can be obtained:

L̇(t) <

n∑
k=1

(−ak‖ξk(t)‖2 + ck). (65)

The main results are summarized by the following theorem.
Theorem 1 Consider the strict-feedback system (8) with

bounded initial states and reference signal. The control laws
choose (60) as the actual control and (19) and (46) as
the virtual controls; the weight updating laws are provided
by (23), (48), and (61) for critic NNs and (24), (49), and (62)
for actor NNs with bounded initial values. If Assumption 1
is held and the design parameters satisfy the conditions (38),
(52), and (64), then the optimized high system control scheme
can guarantee the following.

1) The error signals zi (t), W̃ci (t), and W̃ai (t) are SGUUB.
2) The desired tracking performance can be obtained.

Proof: 1) The inequality (65) can become as

L̇(t) < −aL(t) + c

where a = min{a1, a2, . . . , an} and c =
n∑

k=1
ck .

According to Lemma 1, there is the following fact that:
L(t) < e−at L(0) + c

a
(1 − e−at ).

From the above-mentioned inequality, it can be concluded
that all error signals zi (t), W̃ci (t), and W̃ai (t), i = 1, . . . , n,
are SGUUB.

2) Let Lz(t) = (1/2)
∑n

k=1 z2
k(t), the time derivative of

Lz(t) along (26), (50), and (53) is

L̇z(t) = z1(t)( f1(x̄1) − ẏr (t) + z2(t) + α̂1(z1))

+
n−1∑
k=2

zk(t)( fi (x̄i) + zi+1(t) − ˙̂αi−1 + α̂i (zi ))

+ zn(t)( fn(x̄n(t)) − ˙̂αn−1(zn−1) + u). (66)

Substituting (19), (46), and (60) into (66) has

L̇z(t) = −β1z2
1(t) + z1 f1(x̄1) − z1(t)ẏr + z1(t)z2(t)

− 1

2
z1(t)Ŵ T

a1(t)S1(z1)

+
n−1∑
k=2

(
− βi z

2
i (t) + zi (t) fi (x̄i ) − zi (t) ˙̂αi−1(zi−1)

+ zi (t)zi+1(t) − 1

2
zi Ŵ

T
ai (t)Si (zi )

)

− βnz2
n + zn fn(x̄n) − zn

˙̂αn−1 − 1

2
zn Ŵ T

an(t)Sn(zn).

(67)

Applying Young’s inequality ab ≤ (a2/2) + (b2/2) to (67),
the following result can be yielded:

L̇z(t) ≤ −(β1 − 3)z2
1(t) −

n∑
k=2

(βi − 4)z2
i (t) + D(t) (68)

where D(t) = (1/2)ẏ2
r (t) + (1/2)

∑n−1
k=2

˙̂α2
k−1 + (1/2)∑n

k=1 f 2
k (x̄k) + (1/8)

∑n
k=1(Ŵ T

ak(t)Sk(zk))
2. Because it has

been proven that W̃ai (t), i = 1, . . . , n, are SGUUB by part 1,
the term

∑n
k=1(Ŵ T

ak(t)Sk(zk))
2 is bounded. Since all terms

of D(t) are bounded, there exists a constant ρ such that
|D(t)| < ρ. Thus, the following result can be held:

L̇z(t) < −βLz(t) + ρ

where β = min{β1 − 3, β2 − 4, . . . , βn − 4}. Based on the
above-obtained result, applying Lemma 1 has

Lz(t) < e−βt Lz(0) + ρ

β
(1 − e−βt ).

It implies that the tracking errors can arrive to the desired
accuracy by making β large enough, as a result that the desired
control performance can be obtained.

ξn(t) = [zn(t), W̃ T
an(t), W̃ T

cn(t)]T

An(t) =

⎡
⎢⎢⎢⎢⎣

βn − 4 0 0

0

(
γan

2
− γ 2

cn

2
− 1

32
W∗T

n ωnωT
n W∗

n

)
Sn(zn)ST

n (zn) 0

0 0
1

‖ωn(t)‖2+1

(
γcn

2
− 1

32
W∗T

n Sn(zn)ST
n (zn)W∗

n

)
ωn(t)ωT

n (t)

⎤
⎥⎥⎥⎥⎦

Cn(t) = 1

2
f 2
n (x̄n) + 1

2
˙̂α2

n−1 + γan + 1

2

(
W∗T

n Sn(zn)
)2 + γcn

2
ε2

n (t)
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Fig. 1. Tracking performance.

IV. SIMULATION EXAMPLE

In order to further demonstrate the effectiveness of the
proposed control technique, a numerical simulation is carried
out for a second-order strict-feedback system.

Consider the following nonlinear system:
ẋ1(t) = − sin2(2x1) + x2(t)

ẋ2(t) = (1 − (2 + sin(x1) cos(x2))
2) + u (69)

where x1(t), x2(t) ∈ R are the system states and u ∈ R is the
control input. The desired reference signal is yr = 4 sin(3t/4)
shown in Fig. 1.

Step 1: From the system equation (69), the tracking
error dynamic for the first backstepping step is ż1(t) =
− sin2(2x1) + x2(t) − 3 cos(3t/4). The initial position is
x1(0) = 2. The virtual controller is constructed based on (19),
and the design parameter is β1 = 12.

For the step, the critic and actor NNs contain 36 nodes
with centers μi evenly spaced in the range [−6, 6], and the
widths of the Gaussian function are φi = 1, i = 1, . . . , 36.
The updating laws for critic and actor NNs are given based
on (23) and (24), respectively, of which the learning rates
are γc1 = 0.2 and γa1 = 3 and the initial conditions are
Wc1(0) = [0.02, . . . , 0.02]T ∈ R36×1 and Wa1(0)=[0.01, . . . ,
0.01]T ∈ R36×1.

Step 2: This is the final backtepping step, and the actual
controller is designed in the step. The error dynamic for the
step is ż2(t) = (1 − (2 + sin(x1) cos(x2))

2) − ˙̂α1(t) + u.
The initial position is x2(0) = −2. The actual controller
is constructed based on (60), and the design parameter is
β2 = 14.

For the final step, the critic and actor NNs are constructed
to contain 72 nodes with centers μi evenly spaced in the range
[−6, 6], and the widths of the Gaussian function are φi = 1,
i = 1, . . . , 72. The updating laws are obtained from (61)
and (62), respectively. Their learning rates are γc2 = 0.3 and
γa2 = 4, and initial conditions are Wc2(0) = [0.02, . . . ,
0.02]T ∈ R72×1 and Wa2(0) = [0.01, . . . , 0.01]T ∈ R72×1.

Figs. 1–5 show the simulation results. Fig. 1 shows the
tracking performance. Tracking errors z1(t) and z2(t) are
displayed in Fig. 2, which converge to zero. The cost functions
r1(z1, α1) and r2(z2, u) are presented in Fig. 3. The boundness
of critic and actor weight vectors is shown in Figs. 4 and 5.

Fig. 2. Tracking errors for the first and second steps.

Fig. 3. The cost functions for the first and second steps.

Fig. 4. Critic and actor NN weight norms for the first step.

Fig. 5. Critic and actor NN weight norms for the second step.

Figs. 1–5 further demonstrate that the proposed control can
guarantee that the control objective is achieved.

In order to demonstrate the optimizing performance of
the proposed control method, a comparison with the pub-
lished control approach proposed in [29] is carried out.
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Fig. 6. Two tracking performances.

Fig. 7. Two total cost functions.

The comparative results are shown in Figs. 6 and 7. Fig. 6
shows that two tracking performances are the same, and Fig. 7
shows the cost functions of two control schemes. From Figs. 6
and 7, it can be directly concluded that, with the same tracking
performances, the proposed control scheme is low cost.

V. CONCLUSION

This paper proposes a new control technique named OB
for strict-feedback systems, which melts the optimization into
backstepping control. Since backstepping is the most general
and effective control technique for strict-feedback systems,
it is very significant and advantageous to consider optimization
to the control. In order to achieve the objective, the actor–
critic-based RL algorithm is used, in which the actor NN is
utilized to carry out the control behavior; the critic NN is
utilized to evaluate the optimizing performance and return the
evaluation to actor training. Since all the virtual controls and
the actual control are designed to be the optimized solutions
of corresponding subsystems, the overall control is optimized.
Based on the Lyapunov analysis, it is proven that the proposed
scheme can achieve the control objective. Simulation results
show the effectiveness of the proposed control approach.
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Formation Control With Obstacle Avoidance for
a Class of Stochastic Multiagent Systems

Guoxing Wen , C. L. Philip Chen , Fellow, IEEE, and Yan-Jun Liu

Abstract—This paper addresses formation control with
obstacle avoidance problem for a class of second-order
stochastic nonlinear multiagent systems under directed
topology. Different with deterministic multiagent systems,
stochastic cases are more practical and challenging be-
cause the exogenous disturbances depicted by the Wiener
process are considered. In order to achieve control objec-
tive, both the leader-follower formation approach and the ar-
tificial potential field (APF) method are combined together,
where the artificial potential is utilized to solve obstacle
avoidance problem. For obtaining good system robustness
to the undesired side effects of the artificial potential, H∞
analysis is implemented. Based on the Lyapunov stability
theory, it is proven that control objective can be achieved,
of which obstacle avoidance is proven by finding an energy
function satisfying that its time derivative is positive. Fi-
nally, a numerical simulation is carried out to further demon-
strate the effectiveness of the proposed formation schemes.

Index Terms—Directed topology, formation control,
obstacle avoidance, stochastic multiagent system, H∞
analysis.

I. INTRODUCTION

IN RECENT decades, cooperations or coordinations of multi-
agent systems have received the increasing attention because

the research is meeting military and civilian requirements. Their
applications can be found in various fields, such as coopera-
tive control of satellite clusters, formation control of unmanned
aerial vehicles, distributed optimization of multiple robotic sys-
tems, and scheduling of automated highway systems [1]–[4].
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In the multiagent community, formation control is one of the
most fundamental and important research topics, which requires
a group of autonomous agents to keep a predefined formation
pattern moving in the desired trajectory with velocity. In some
sense, it can also be viewed as all autonomous agents to finish
a common task by collaboration. Therefore, multiagent forma-
tions can be widely applied in the areas of aerospace, industry,
entertainment, and other fields. For example, satellite formation
can greatly reduce operating costs, improve system stability and
reliability, and exceed the ability of multiple single-spacecrafts.
In past decades, many formation strategies, such as leader-
follower [5], virtual structure [6], and behavior-based [7], have
been well developed and applied, where the leader-follower ap-
proach is the most popular because of its simplicity and stability.

However, most existing formation control methods are only
focused on deterministic multiagent systems, which do not con-
sider any stochastic disturbances. Since information communi-
cation in multiagent system control is often interfered by vari-
ous kinds of stochastic noises, such as thermal noise, channel
fading, and quantization effect during encoding and decoding,
the stochastic dynamic model can more precisely to describe
the practical multiagent engineering than the deterministic case.
Although many control techniques developed for deterministic
systems have been successfully extended to stochastic dynamic
systems, such as backstepping, adaptive observer, reinforcement
learning, and nonlinear optimality [8]–[12], these techniques
cannot be directly applied to the multiagent control owing to the
state coupling problem. Recently, several consensus schemes of
stochastic multiagent systems have been reported and received
widespread concern [13], [14]. Nevertheless, in comparison with
consensus control, formation control is challenging and interest-
ing because the predefined formation configuration is required
to maintain.

In the formation control community, the obstacle avoidance
problem is still a big challenge because of uncontrollability and
complexity [15]–[17]. To solve the problem, artificial potential
field (APF) methods are usually considered [18]–[22]. By treat-
ing every obstacle as the high-potential point, a repulsive force
will be triggered to compel the agent system to bypass the ob-
stacles when any agent moves into a predefined range around
obstacles. Furthermore, in order to achieve the ideal control per-
formance, the robustness analysis is necessary to be performed
for disturbance environments. Actually, the artificial potential
forces will cause undesired side effects after finishing the tasks
of obstacle avoidance, so it can be treated as exogenous dis-
turbances. Generally, H∞ control strategy is first considered

0278-0046 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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for obtaining the desired system robustness when exogenous
disturbances enter a system [23]–[26]. However, most exist-
ing formation schemes concerning obstacle avoidance are only
focused on the deterministic multiagent systems [18]–[22]. In
addition, the existing robust control schemes rarely address the
multiagent formation [23]–[26]. Furthermore, the H∞ robust
control of stochastic multiagent formation is very difficult and
challenging whether control design or stability analysis because
Itô differentiation involves not only gradient but also Hessian
term (second-order partial derivative term).

Motivated by the above discussion, this paper addresses
formation control with obstacle avoidance problems for a class
of second order stochastic multiagent systems under directed
topologies. The main contributions can be listed as follows.

1) The obstacle avoidance problem of multiagent forma-
tion is solved by combining both the artificial potential
method and leader-follower formation approach together,
which is proven by a novel method.

2) The proposed formation control scheme is developed for
stochastic second-order multiagent systems with directed
interconnection topology, so it can be applied to a wide
class of practical multiagent engineering.

3) H∞-technique-based robust control is extended to the
stochastic multiagent systems.

For convenience, the following notations are used throughout
this paper.

1) R represents real number; Rn denotes real n-dimensional
vector space; Rn×m is n × m-dimensional matrix space;
In is n × n identity matrix.

2) ‖·‖ represents 2-norm; E denotes mathematical expecta-
tion; ‖ · ‖LE 2

:= (E
∫∞

0 ‖ · ‖2dt)
1
2 .

3) T is the transposition symbol; ∇ is the gradient operator;
⊗ denotes Kronecker product.

II. PRELIMINARIES

A. Stochastic System

Consider the following stochastic system:

dy(t) = (f (y) + τ(t)) dt + g (y) dω(t) (1)

where y(t) ∈ Rn is the state; τ(t) is disturbance input; ω(t) ∈
Rr is an independent standard Wiener process; f : Rn → Rn ,
g : Rn → Rn×r are Lipschitz with f (0) = 0 and g (0) = 0.

Definition 1 [27]: For a positive definite, radially un-
bounded, twice continuously differentiable function V (y) as-
sociated with stochastic systems (1), the infinitesimal generator
L is defined as follows:

L [V (y)] =
∂V

∂y
(f (y) + τ(t)) +

1
2

Tr
{

gT ∂2V

∂y2 g

}

. (2)

Definition 2 [28]: The equilibrium state y ≡ 0 of stochastic
system (1) is said to be exponentially mean square stable if there
exist k1 and k2 such that

E
[
‖y(t)‖2

]
≤ k1 ‖y(0)‖2 e−k2 t . (3)

Definition 3 [29]: The H∞ problem for stochastic system
(1) is said to be solved if the following conditions are satisfied:

1) the closed-loop system (1) is exponentially mean-square
stable when τ(t) = 0;

2) the following inequality is satisfied under zero initial
values:

‖y(t)‖2
LE 2

≤ γ ‖τ(t)‖2
LE 2

(4)

where γ > 0 is the noise attenuation level; τ(t) ∈
LE2 ([0,∞) ;Rmn ).

Lemma 1 [9]: Suppose there exist a C2 positive function
V (t) ∈ Rn → R+ , two constants c1 , c2 , and class K∞ functions
ν1(·), ν2(·) such that

ν1 (‖y‖) ≤ V (y) ≤ ν2 (‖y‖)
L [V (y)] ≤ −c1V (y) + c2 . (5)

Then, there is a unique solution of (1) for any initial state y(0) ∈
Rn almost surely, and the following condition satisfies:

E [V (y(t))] ≤ e−c1 tV (y(0)) +
(
1 − e−c1 t

) c2

c1
. (6)

Remark 1: The basic idea of H∞ control is that the influence
of disturbance input τ(t) on the system output y(t) is attenuated
to desired level. Obviously, if zero initial state is satisfied, the

H∞ performance (4) can be rewritten as
‖y (t)‖2

L E 2

‖τ (t)‖2
L E 2

≤ γ, which

implies that the gain between y(t) and τ(t) must be equal or
less than the prescribed level γ. Therefore, system output can be
robust to disturbances by satisfying the H∞ control performance
(4).

B. Algebraic Graph Theory

Let G = (V, ε,A) denote a directed graph containing n nodes,
where V = {v1 , v2 , . . . , vn}, ε ⊆ V × V , and A = [aij ] are the
node set, edge set, and weighted adjacency matrix, respectively.
The interconnection topology of multiagent system can be de-
picted by a graph G, in which every agent is represented by
a node. Let εij = (vj , vi) be a directed edge, when εij ∈ ε
if and only if there is the information flowing from agent j
to agent i. A directed network G is said to be strongly con-
nected if any two distinct nodes can be connected by a se-
quence of directed edges. The agent j is said to be a neighbor
of agent i if εij ∈ ε, and all neighbors of agent i are denoted
by the set Ni = {vj ∈ V : εij ∈ ε, j �= i}. The adjacency ma-
trix A = [aij ] is used for describing the communication weights
among agents, where aij > 0 ⇔ εij ∈ ε and otherwise aij = 0
and aii = 0. Laplacian matrix of the graph G is defined as

L = D − A (7)

where D = diag{d1 , d2 , . . . , dn}, di =
∑n

j=1 aij . Let B =
diag{b1 , b2 , . . . , bn}T denote the communication weights be-
tween agents and leader. It is assumed that at least one agent
connects with leader, i.e., b1 + b2 + · · · + bn > 0.

C. Artificial Potentials and Virtual Forces

In order to avoid collision with the obstacles, APF methods
are employed by taking the obstacles as high potential points,
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which produce the repulsive forces to expel all agents away from
them.

Define the relative position vector zik (t) between agent i and
obstacle ok as

zik (t) = xi(t) − ok , k = 1, . . . , q (8)

where xi is the position state of agent i. Then, the repulsive
potential function is defined as follows.

Definition 4 [30]: The repulsive potential function
Pk (‖zik (t)‖) is a nonnegative differentiable function
such that

1) Pk (‖zik‖) → +∞ when ‖zik‖ → dk , where dk is the
minimal separation distance between agents and obstacle
k.

2) Pk (‖zik‖) attains its minimum when ‖zik‖ > d̄k , where
d̄k is the distance threshold simulating the repulsion ef-
fect, which satisfies d̄k > dk .

The repulsive force is derived from negative gradient of the
potential function Pk (‖zik‖) as

pik (t) = −∇zi k
Pk (‖zik‖) = −∇xi

Pk (‖zik‖) . (9)

By employing the APF method, the possible collisions be-
tween agents and obstacles can be avoided. When all agents
move away from the obstacles, i.e., {x1 , . . . , xn} /∈ Ωk where
Ωk =

{
xi |‖zik‖ ≤ d̄k

}
is a compact set, the repulsive forces

arrive the minimum and satisfy pik (t) ∈ L2 [0, T ]. Although the
repulsive forces attenuate to the minimum in the situation, they
still produce undesired side effects to the control behaviors. In
order to ensure formation behaviors to be robust to the undesired
side effect, H∞ analysis is implemented by considering them as
the disturbance inputs. When agent i, i ∈ {1, . . . , n}, is moving
toward obstacle ok , k ∈ {1, . . . , q}, i.e., xi ∈ Ωk , the repulsive
force pik (t) will play a role to drive the agent away from the
obstacle.

D. Supporting Lemmas

Lemma 2 [31]: A directed graph G is strongly connected if
and only if its Laplacian matrix L is irreducible.

Lemma 3 [32]: If the matrix L = [lij ] ∈ Rn×n satisfy
1) lij ≤ 0, i �= j, lii = −∑n

j=1 lij , i = 1, 2, . . . , n;
2) L is irreducible.

Then , the following conclusions hold.
1) Real parts of the eigenvalues excepting for the eigenvalue

0 are positive.
2) [1, 1, . . . , 1]T is a right eigenvector corresponding to the

eigenvalue 0.
3) if δ = [δ1 , δ2 , . . . , δn ]T is a left eigenvector correspond-

ing to the eigenvalue 0, then its normalization can be
chosen so that δi > 0 for all i = 1, 2, . . . , n.

Lemma 4 [33]: Let L = [lij ] ∈ Rn×n be an irreducible ma-
trix such that lij = lj i ≤ 0 for i �= j, and lii = −∑n

j=1 lij , then
all eigenvalues of the matrix

L̃ = L + B =

⎡

⎢
⎣

l11 + b1 · · · l1n

...
. . .

...

ln1 · · · lnn + bn

⎤

⎥
⎦

are positive, where bi ≥ 0 satisfies b1 + b2 + · · · + bn > 0.
Lemma 5 (Schur Complement [34]): A linear matrix in-

equality [ M (x)
P T (x)

P (x)
N (x) ] > 0, where M(x) = MT (x), N(x) =

NT (x), is equivalent to either of the following conditions:
1) M(x) > 0, N(x) − PT (x)M−1(x)P (x) > 0;
2) N(x) > 0, M(x) − P (x)N−1(x)PT (x) > 0.
Lemma 6: Let V (t) ∈ R be a positive definite continuous

function, if L (V (t)) > βV (t) (or L (V (t)) ≤ βV (t)) is satis-
fied, then the following inequality holds:

E (V (t)) > eβ (t−t0 )E (V (t0))
(
or E (V (t)) ≤ eβ (t−t0 )E (V (t0))

)
(10)

where t ≥ t0 , β is a positive constant.
Proof: From L (V (t)) > βV (t) (or L (V (t)) ≤ βV (t)),

the following one holds:

d (E (V ))
dt

= E (L (V )) > βE (V )
(

or
d (E (V ))

dt
= E (L (V )) ≤ βE (V )

)

.

Further, having

d (E (V ))
E (V )

> βdt

(

or
d (E (V ))

E (V )
≤ βdt

)

.

Integrating the above inequality from t to t0 , there is the follow-
ing one:

ln(E (V ))|tt0
> β(t − t0) (or ln(E (V ))|tt0

≤ β(t − t0)).

The inequality (10) can be obtained by calculating exponent on
both sides of the above inequality. �

III. MAIN RESULTS

A. Problem Formulation and Control Objective

Consider the second-order multiagent systems molded by the
following stochastic differential equations:

dxi(t) = vi(t)dt

dvi(t) = (f (xi, vi) + ui) dt + φi (xi, vi) dwi(t)

i = 1, . . . , n (11)

where xi(t) = [xi1(t), . . . , xim (t)]T ∈ Rm and vi(t) = [vi1(t),
. . . , vim (t)]T ∈ Rm are the position and velocity states, respec-
tively; ui = [ui1, . . . , uim ]T ∈ Rm is the control input; f(·) ∈
Rm is the continuously differentiable vector-valued function
with f(0) = 0m ; φi(xi, vi) ∈ R are the nonzero smooth func-
tions; wi(t) is the independent m-dimensional standard Wiener
process defined on a complete probability space.

Remark 2: For the multiagent dynamic (11), the standard
Wiener process wi(t) is used to represent stochastic distur-
bances. Since stochastic disturbances inherently exist in almost
all physical systems, such as the Gaussian white noise of a
communication channel, it is very necessary to research the
stochastic case of multiagent systems.
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The leader dynamics are described as

ẋr (t) = vr (t), v̇r (t) = f (xr , vr ) (12)

where xr (t) ∈ Rm and vr (t) ∈ Rm are the position and velocity
states, respectively.

Assumption 1 [35]: The continuously differentiable vector-
valued function f (·) is Lipschitz, i.e., there exist nonnegative
constants ρ1i , ρ2i such that

‖f (xi, vi) − f (xr , vr )‖ ≤ ρ1i ‖xi − xr‖ + ρ2i ‖vi − vr‖
i = 1, . . . , n. (13)

Assumption 2 [36]: The smooth function φi (xi, vi), i =
1, . . . , n, in differential (11) satisfies the following condition:

φ2
i (xi, vi) ≤ ζ1i ‖xi‖2 + ζ2i ‖vi‖2 (14)

where ζ1i and ζ2i are two positive constants.
Assumption 3 [37]: The reference signals xr (t) and vr (t)

are bounded by the constants ε1 and ε2 , i.e., ‖xr‖ ≤ ε1 , ‖vr‖ ≤
ε2 .

Definition 5 (Mean Square Formation [13]): The stochastic
multiagent system (11) is said to reach the mean square for-
mation if the following conditions are held for bounded initial
condition:

lim
t→∞E

(
‖xi(t) − xr (t) − ηi‖2

)
= 0

lim
t→∞E

(
‖vi(t) − vr (t)‖2

)
= 0, i = 1, . . . , n (15)

where ηi = [ηi1 , . . . , ηim ]T is a constant vector to denote the
predefined relative position between agent i and reference (12).

In this paper, the control objective is to design a H∞ forma-
tion scheme such that the multiagent system (11) satisfies the
following conditions:

1) keep the predefined formation pattern in mean square;
2) follow the desired trajectory with velocity in mean square;
3) solve the obstacle avoidance problem in mean square.

In order to achieve the control objective, the error variables
between the agents and leader are defined as

exi = xi(t) − xr (t) − ηi

evi = vi(t) − vr (t), i = 1, . . . , n. (16)

From (11) and (12), the error dynamics can be derived as

dexi(t) = evi(t)dt, devi(t) =
(
f̃i(t) + ui

)
dt

+ φi (xi, vi) dwi, i = 1, . . . , n (17)

where f̃i(t) = f (xi, vi) − f (xr , vr ).
The (17) is rewritten to the compact form as

de(t) =

(([
0n×n In

0n×n 0n×n

]

⊗ Im

)

e(t) +

[
0nm

f̃(t)

]

+
[

0nm

u

])

dt +
([

0n×n

Φ

]

⊗ Im

)

dw (18)

where e(t) = [eT
x (t), eT

v (t)]T , ex = [eT
x1(t), . . . , e

T
xn (t)]T , ev

= [eT
v1(t), . . . , e

T
vn (t)]T , f̃(t) = [f̃ T

1 (·), . . . , f̃ T
n (·)]T , u = [uT

1 ,
. . . , uT

n ]T , Φ = diag{φ1 , . . . , φn}, and w = [wT
1 , . . . , wT

n ]T .

B. Formation Control Protocol and Stability Analysis

Define the formation errors with respect to position and ve-
locity as

ẽxi(t) =
∑

j∈Ni

aij (xi − ηi − xj + ηj ) + bi (xi − xr − ηi)

ẽv i(t) =
∑

j∈Ni

aij (vi(t) − vj (t)) + bi (vi(t) − vr (t))

i = 1, 2, . . . , n (19)

where aij is the ith row and jth column element of adjacency
matrix A; bi is the connection weight between agent i and leader.

Based on the error variables (16), the terms ẽv i(t), ẽv i(t) can
be rewritten as

ẽxi(t) =
∑

j∈Ni

aij (exi(t) − exj (t)) + biexi(t)

ẽv i(t) =
∑

j∈Ni

aij (evi(t) − evj (t)) + bievi(t)

i = 1, 2, . . . , n. (20)

Design the formation control as

ui = −αi (ẽxi + ẽv i) −
q∑

k=1

γikpik (t), i = 1, 2, . . . , n (21)

where αi and γik are positive design constants and specified
later; pik (t) is the repulsion force defined by the (9).

Substituting (21) into (17), the following result can be ob-
tained:

dexi(t) = evi(t)dt

devi(t) =

(

−αi (ẽxi(t) + ẽv i(t)) −
q∑

k=1

γikpik (t) + f̃i(t)

)

dt

+ φi (xi, vi) dwi, i = 1, . . . , n. (22)

Transforming (22) to compact form as

de(t) =

(

−
([

0n×n −In

ΛL̃ ΛL̃

]

⊗ Im

)

e(t) −
[

0nm

p(t)

]

+

[
0nm

f̃(t)

])

dt +
([

0n×n

Φ

]

⊗ Im

)

dw (23)

where Λ = diag{α1 , . . . , αn}, p(t) = [(
∑q

k=1 γ1kp1k (z1k ))T ,

. . . , (
∑q

k=1 γnkpnk (znk ))T ]T , L̃ = L + B, B = diag{b1 , . . . ,
bn}.

Theorem 1: Consider the multiagent system (11) with ref-
erence signals (12) under strongly connected communication
graph G. The H∞ formation control (21) can achieve the control
objective for bounded initial condition if the design parameters
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αi , γik , and κ satisfy the following conditions:

αi = κδi, γik > 1, i = 1, 2, . . . , n,

κ ≥ max1≤i≤n{4ρ1i + 3ρ2i + m(ζ1i + ζ2i)} + 3
λmin (Θ + 2ΔB)

(24)

where δ = [δ1 , δ2 , . . . , δn ]T is the normalized left eigenvector
of Laplacian matrix L associated with eigenvalue 0, λmin(Θ +
2ΔB) is the minimum eigenvalue of symmetrical matrix Θ +
2ΔB, Θ = LT Δ + ΔL, Δ = diag{δ1 , δ2 , . . . , δn}.

Remark 3: The proof is consisted of two parts, in which part
1 proves the formation performance and part 2 proves the ob-
stacle avoidance. When all agents are not in the area of possible
collision, i.e., {x1 , . . . , xn} /∈ ⋃q

k=1 Ωk , although the repulsive
force term

∑q
k=1 γikpik (zik ) attains to the minimum, they still

affect the formation behavior. In order to obtain the desired
robustness, H∞ analysis is implemented by handling them as
disturbance inputs. When any agent enters the scope of pos-
sible collision, i.e., ∀xi ∈

⋃q
k=1 Ωk , the repulsive force term∑q

k=1 γikpik (zik ) will dramatically increase to drive the agent
away from the obstacles.

Proof:
1) Part 1: Choose the following Lyapunov function candidate:

V (t) =
1
2
eT (t) (Q ⊗ Im ) e(t) (25)

where Q = [κ(Θ+2ΔB )
In

In

In
]. It should be mentioned that the ma-

trix Q can be reexpressed as Q = [ L̃T Λ+ΛL̃
In

In

In
] by using these

facts αi = κδi, i = 1, . . . , n, of condition (24).
According to Lemma 3, the left eigenvector δ = [δ1 , δ2 , . . . ,

δn ]T of Laplacian matrix L satisfies δi > 0, i = 1, 2, . . . , n.
From the fact Θ1n =

(
LT Δ + ΔL

)
1n= LT Δ1n + ΔL1n=

LT δ + ΔL1n = 0, it can be concluded that Θ is a zero row-sum
matrix. According to Lemmas 2 and 4, Θ + 2ΔB is a positive
definite matrix, thus, κ(Θ + 2ΔB) − In > 0 can be held if κ
satisfies the condition (24). Therefore, the matrix Q is positive
definite in accordance with Lemma 5.

The infinitesimal generator of V (t) associating with error
dynamic (23) is

L (V (t)) = −1
2
eT (t)

(([
0n×n −In

ΛL̃ ΛL̃

]T

Q

+Q

[
0n×n −In

ΛL̃ ΛL̃

])

⊗ Im

)

e(t) − eT (t) (Q ⊗ Im )
([

0nm

p(t)

]

−
[

0nm

f̃(t)

])

+
1
2
Tr

(([
0n×n

Φ

]T

Q

[
0n×n

Φ

])

⊗ Im

)

. (26)

Applying to matrix theory, there is the following result:

[
0n×n −In

ΛL̃ ΛL̃

]T

Q + Q

[
0n×n −In

ΛL̃ ΛL̃

]

=
[

κ (Θ + 2ΔB) 0n×n

0n×n κ (Θ + 2ΔB) − 2In

]

. (27)

Substituting (27) into (26) yields

L (V (t)) = −1
2
eT (t)

×
([

κ (Θ + 2ΔB) 0n×n

0n×n κ (Θ + 2ΔB) − 2In

]

⊗ Im

)

e(t)

− eT (t) (Q ⊗ Im )
([

0nm

p(t)

]

−
[

0nm

f̃(t)

])

+
m

2
Tr
(
ΦT Φ

)
. (28)

Using the following fact

eT (t) (Q ⊗ Im )
([

0nm

p(t)

]

−
[

0nm

f̃(t)

])

= eT (t)
[

p(t)
p(t)

]

− (eT
x (t) + eT

v (t)
)
f̃(t) (29)

the inequality (28) can become

L (V (t)) = −1
2
eT (t)

×
([

κ (Θ + 2ΔB) 0n×n

0n×n κ (Θ + 2ΔB) − 2In

]

⊗ Im

)

e(t)

− eT (t)
[

p(t)
p(t)

]

+
(
eT
x (t) + eT

v (t)
)
f̃(t) +

m

2

n∑

i=1

φ2
i .

(30)

Based on Assumptions 1–3, the following results can be
obtained by using Cauchy–Buniakowsky–Schwarz inequality,
(
∑n

k=1 akbk )2 ≤∑n
k=1 a2

k

∑n
k=1 b2

k , and Young’s inequality,
ab ≤ a2

2 + b2

2 :

eT
x (t)f̃(t) ≤

n∑

i=1

(‖exi‖ ‖(f (xi, vi) − f (xr , vr ))‖)

≤
n∑

i=1

(‖exi‖ (ρ1i‖exi‖ + ρ2i‖evi‖ + ρ1i‖ηi‖))

≤
n∑

i=1

(
3ρ1i + ρ2i

2
‖exi‖2 +

ρ2i

2
‖evi‖2 +

ρ1i

2
‖ηi‖2

)

(31)

eT
v (t)f̃(t) ≤

n∑

i=1

(‖evi‖ ‖(f (xi, vi) − f (xr , vr ))‖)

≤
n∑

i=1

(‖evi‖ (ρ1i‖exi‖ + ρ2i‖evi‖ + ρ1i‖ηi‖))

≤
n∑

i=1

(ρ1i

2
‖exi‖2 + (ρ1i + ρ2i) ‖evi‖2 +

ρ1i

2
‖ηi‖2

)
(32)
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n∑

i=1

φ2
i (xi, vi) ≤

n∑

i=1

(
ζ1i ‖xi‖2 + ζ2i ‖vi‖2

)

≤ 2
n∑

i=1

(
ζ1i ‖exi‖2 + ζ2i ‖evi‖2 + 2ζ1i ‖xr‖2

+ ζ2i ‖vr‖2 + 2ζ1i ‖ηi‖2
)

≤ 2
n∑

i=1

(
ζ1i ‖exi‖2 + ζ2i ‖evi‖2

)
+ 2

n∑

i=1

(
2ζ1iε

2
1

+ ζ2iε
2
2 + 2ζ1i ‖ηi‖2

)
. (33)

Substituting the above inequalities into (30), the following one
can be yielded:

L (V (t)) ≤ −1
2
eT (t)

×
([

κ (Θ + 2ΔB) − N1 0n×n

0n×n κ (Θ + 2ΔB) − N2 − 2In

]

⊗ Im

)

e(t) − eT (t)
[

p(t)
p(t)

]

+
n∑

i=1

(
2mζ1iε

2
1 + mζ2iε

2
2 + (2mζ1i + ρ1i) ‖ηi‖2

)
(34)

where

N1 =

⎡

⎢
⎣

4ρ11 + ρ21 + 2mζ11 · · · 0
...

. . .
...

0 . . . 4ρ1n + ρ2n + 2mζ1n

⎤

⎥
⎦ ,

N2 =

⎡

⎢
⎣

2ρ11 + 3ρ21 + 2mζ21 · · · 0
...

. . .
...

0 · · · 2ρ1n + 3ρ2n + 2mζ2n

⎤

⎥
⎦.

Adding and subtracting the term 1
4 [pT (t), pT (t)][pT (t),

pT (t)]T on the right-hand side of inequality (34), the following
inequality is yielded:

L (V (t)) ≤ −1
2
eT (t)

×
([

κ (Θ + 2ΔB) − N1 − In 0n×n

0n×n κ (Θ + 2ΔB) − N2 − 3In

]

⊗ Im

)

e(t) − (e(t)

+
1
2

[
p(t)
p(t)

])T (

e(t) +
1
2

[
p(t)
p(t)

])

+
1
4

∥
∥
∥
∥

[
p(t)
p(t)

]∥
∥
∥
∥

2

+
n∑

i=1

(
2mζ1iε

2
1 + mζ2iε

2
2 + (2mζ1i + ρ1i) ‖ηi‖2

)
. (35)

From the fact that (e + 1
2 [ p(t)

p(t) ])
T (e + 1

2 [ p(t)
p(t) ]) ≥ 0, (35) is

rewritten as

L (V (t)) ≤ −1
2
eT (t) (M ⊗ Im ) e(t) + γξT (t)ξ(t) (36)

where

M =
[
κ(Θ + 2ΔB) − N1 − In 0n×n

0n×n κ (Θ + 2ΔB) − N2 − 3In

]

,

γ = 1/2 max
i=1,...,n

{
p∑

k=1

γ2
ik

}

,

ξ(t) =

⎡

⎢
⎢
⎣

√
√
√
√
∑n

i=1

(
2mζ1iε2

1 + mζ2iε2
2 + (2mζ1i + ρ1i) ‖ηi‖2

)

γ
,

(
p∑

k=1

p1k (z1k )

)T

, . . . ,

(
p∑

k=1

pnk (znk )

)T
⎤

⎦

T

.

Since M is a positive definite matrix when designing κ satis-
fies (24), the inequality (36) can be rewritten as

L (V (t)) ≤ −λmin (M)
λmax (Q)

V (t) + γξT (t)ξ(t). (37)

The repulsive force p(t) is handled as the disturbance input
in the case. If p(t) = 0, the inequality (37) can be rewritten as

L (V (t)) ≤ −c1V (t) + c2 (38)

where c1 = λm in (M )
2λm a x (Q) , c2 =

∑n
i=1(2mζ1iε

2
1 + mζ2iε

2
2 +

(2mζ1i + ρ1i)‖ηi‖2).
From Lemma 1, the following one can be obtained:

E [V (t)] ≤ e−c1 tV (0) + (1 − e−c1 t) c2
c1

. (39)

By making the design parameter κ large enough, the forma-
tion errors convergence to desired accuracy, which implies the
exponentially mean square stable to be achieved.

Since the multiagent systems get far from the obstacles, ξ(t)
belongs to LE2 ([0,∞) ;Rmn ). By Integrating (36) from 0 to T
and taking expectation, the following results can be obtained

E

∫ T

0
L (V (t)) dt = E (V (T ) − V (0))

≤ −λmin (M)
2

E

∫ T

0
‖e(t)‖2dt + γE

∫ T

0
‖ξ(t)‖2dt

= −β ‖e(t)‖2
LE 2

+ γ ‖ξ(t)‖2
LE 2

(40)

where β = λm in (M )
2 .

Obviously, ‖e(t)‖2
LE 2

≤ γ
β ‖ξ(t)‖2

LE 2
if V (0) = 0, and thus,

the H∞ control performance (4) is satisfied.
2) Part 2: (In the part, collision avoidance is analyzed only

for agent i and obstacle j. For the other cases, the proofs are
similar.)

Consider the following energy function:

Vij (t) =
1
2
zT
ij (t)zij (t) +

1
2
vT

i (t)vi(t). (41)
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Using (11), the infinitesimal generator is

L (Vij (t)) = zT
ij vi − αivi

T (ẽxi(t) + ẽv i(t)) + vi
T f̃i(t)

− vi
T

p∑

k=1,k �=j

γik pik (t) − γij vi
T pij (t) +

1
2
φ2

i . (42)

Since the dwell time of agent i in the region Ωj is finite,
these continuous terms zij (t), vi(t), ẽxi(t), ẽv i(t), f̃i(t), φi and∑p

k=1,k �=j γik pik (t) are bounded. In addition, if the agent i is
closing the obstacle j, it implies that the agent is moving to-
ward gradient direction of the artificial potential Pj (t), from the
definition of repulsive potential (Definition 2), there is the fact
that −vT

i (t)pij (t) = vT
i ∇xi

Pj (t) → ∞ if ‖zij‖ → dj . There-
fore, the following inequality can be held if agent i is closing to
obstacle j sufficiently:

− γij v
T
i (t)pij (t) >

γij

2
zT
ij zij +

γij

2
vT

i vi − zT
ij vi − vi

T f̃i(t)

+ αivi
T (ẽxi(t) − ẽv i(t)) +

1
2
φ2

i +
p∑

k=1,k �=j

γik pik (t). (43)

Applying the above fact to (42) yields

L (Vij (t)) > γijVij (t). (44)

According to Lemma 6, the following result holds:

E(‖zij (t)‖2) > 2eγi j (t−t0 )E (Vij (t0)) − E(‖vi(t)‖2). (45)

Thus, ‖zij (t)‖ > dj can be guaranteed by designing the param-
eter γij appropriately, i.e., the collision between agent i and
obstacle j can be avoided in mean square. �

IV. SIMULATION EXAMPLES

In order to demonstrate the effectiveness of the proposed
control strategy, a simulation example of stochastic multiagent
formation that is consisted of four agents is carried out. The
multiagent system is modeled as

dxi(t) = vi(t)dt

dvi(t) =
([

5 cos (0.1vi1)
3 sin (0.2vi2)

]

+ ui

)

dt +
‖vi‖
‖xi‖dwi(t)

i = 1, . . . , 4. (46)

Their initial positions are x1 (0) = [6, 5], x2 (0) = [−5, 6],
x3 (0) = [5,−6], x4 (0) = [−6,−5].

The reference signal is modeled by the following dynamic:

ẋi(t) = vi(t), v̇i(t) =
[

5 cos (0.1xi1(t))
3 sin (0.2xi2(t))

]

. (47)

The desired formation pattern is η1 = [4; 4], η2 = [−4; 4],
η3 = [4;−4], η4 = [−4;−4]. Two obstacle points, o1 and o2 ,
are set at t = 4.2 and t = 14, respectively. The desired trajectory
and two obstacles are presented in Fig. 1.

Control objective: by applying the control protocol (21), steer-
ing the multiagent system (46) follows to the reference signals
(47), meanwhile maintains the predefined formation pattern and
avoids collision with obstacles.

Fig. 1. Reference trajectory with two obstacles.

The Laplacian matrix is

L =

⎡

⎢
⎢
⎣

1.5 −0.7 0 −0.8
−0.6 1.4 −0.8 0
−0.8 0 1.7 −0.9

0 −0.7 −0.9 1.6

⎤

⎥
⎥
⎦ .

The weight matrix between agents and leader is B =
diag {0, 0.9, 0, 0.9}.

The potential functions are designed as

P1 (‖zi1‖) = ‖zi1(t)‖ e(‖zi 1 (t)‖−5)−2

P2 (‖zi2‖) = ‖zi2(t)‖ e(‖zi 2 (t)‖−4)−2
. (48)

The corresponding repulsive forces derived from negative
gradient of the potential functions are

pi1 = −∇xi
P1 (‖zi1‖) =

(
2(‖zi1‖ − 5)−3e(‖zi 1 ‖−5)−2

− ‖zi1‖−1 e(‖zi 1 ‖−5)−2
)

zi1(t)

pi2 = −∇xi
P2 (‖zi2‖) =

(
2(‖zi2‖ − 4)−3e(‖zi 2 ‖−4)−2

− ‖zi2‖−1 e(‖zi 2 ‖−4)−2
)

zi2(t), i = 1, . . . , 4. (49)

The simulation results are shown in Figs. 2–5. Fig. 2 displays
the formation control without the assistance of artificial po-
tentials, where the controller is ui = −50 (ẽxi(t) + ẽv i(t)), i =
1, 2, 3, 4. Obviously, the obstacle avoidance cannot be achieved.
In order to solve the problem, the artificial potentials (49) are em-
ployed in accordance with the formation protocol (21). Then, the
controller is derived as ui = −50 (ẽxi + ẽv i) − 41.5pi1(t) −
36pi2(t), i = 1, 2, 3, 4, where 50, 41.5, and 36 are the controller
parameters αi , γi1 , and γi2 of (49), respectively. Fig. 3 shows
the control performance under the assistance of artificial poten-
tials. Obviously, the obstacle avoidance can be achieved. Fig. 4
shows the velocity error of multiagent formation, it implies
that all agents can follow the reference velocity after finishing
the obstacle avoidance. The comparison between both with and
without artificial potential is shown in Fig. 5. The simulation
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Fig. 2. Obstacle avoidance cannot be achieved without the assistance
of artificial potentials.

Fig. 3. Obstacle avoidance is achieved under the assistance of artificial
potentials.

Fig. 4. Velocity errors in the obstacle environment.

Fig. 5. Comparison concerning obstacle avoidance performance be-
tween both with and without the assistance of artificial potential.

results further demonstrate that the proposed stochastic forma-
tion approach can well solve the obstacle avoidance problem.

V. CONCLUSION

The H∞-technique-based formation control scheme was pro-
posed for second-order stochastic multiagent systems under di-
rected topology. In order to solve the obstacle avoidance prob-
lem, APF methods were employed to drive all agents away from
obstacles. According to Lyapunov stability theory, it was proven
that the proposed formation approach can guarantee the multi-
agent systems will move along the desired route with velocity
while maintaining the predefined formation patterns and avoid-
ing collision with obstacles. Finally, a numerical simulation was
carried out to verify the effectiveness of the proposed approach.
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Neural Network-Based Adaptive Leader-Following
Consensus Control for a Class of Nonlinear

Multiagent State-Delay Systems
Guoxing Wen, C. L. Philip Chen, Fellow, IEEE, Yan-Jun Liu, and Zhi Liu

Abstract—Compared with the existing neural network (NN) or
fuzzy logic system (FLS) based adaptive consensus methods, the
proposed approach can greatly alleviate the computation burden
because it needs only to update a few adaptive parameters online.
In the multiagent agreement control, the system uncertainties
derive from the unknown nonlinear dynamics are counteracted
by employing the adaptive NNs; the state delays are compen-
sated by designing a Lyapunov–Krasovskii functional. Finally,
based on Lyapunov stability theory, it is demonstrated that the
proposed consensus scheme can steer a multiagent system syn-
chronizing to the predefined reference signals. Two simulation
examples, a numerical multiagent system and a practical multi-
manipulator system, are carried out to further verify and testify
the effectiveness of the proposed agreement approach.

Index Terms—Consensus control, external disturbance, neural
networks (NNs), nonlinear multiagent systems, state delay.

I. INTRODUCTION

IN RECENT decades, multiagent system control has
become an attractive and active research topic because of

its wide applications in various fields, such as flocking, dis-
tributed sensor networks, unmanned aerial vehicle formation,
etc. [1]–[5]. In multiagent control community, the consensus
is one of the most fundamental research topics [6]. Roughly
speaking, consensus control of a multi-agent system is all
agents to be synchronized to a common state by a control
protocol based on the neighbor agents’ information. Usually,
consensus control can be divided into two classes that are
leaderless consensus and leader-following consensus, of which
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leader-following consensus is that all agents are synchro-
nized by following a common reference signal. In the
recent decades, many excellent consensus methods have been
reported (see [6]–[8]). In [6], the consensus problem is ana-
lyzed for the multiagent dynamics with fixed and switching
topologies, and two classes of consensus methods are intro-
duced for the communication networks without and with
time-delays. In [7], the leader-following consensus control is
addressed for the higher order multiagent systems, and every
agent’s controller is constructed using the local information.
The agreement control design is achieved by integrating the
algebraic graph theory, Riccati inequality and Lyapunov sta-
bility analysis together. In [8], two novel distributed adaptive
dynamic consensus protocols are proposed, in which one pro-
tocol assigns an adaptive coupling weight to each edge in
communication graph and the other uses an adaptive coupling
weight for each node. Although these consensus methods men-
tioned in [6]–[8] have good control performance for the linear
systems, they are difficult to be generalized to the nonlinear
systems.

It is well known that the nonlinear model can describe sys-
tem dynamic really. In recent years, a few nonlinear consensus
controls have been reported and received considerable atten-
tions, for instance, [9]–[12], but these methods do not consider
any time delay and external disturbance. In fact, most exist-
ing consensus methods about the time delay problem are only
focused on the linear multiagent systems [13]–[15]. For the
nonlinear multiagent systems, it is still an unexplored research
topic. In practical engineering systems, the state delays and
external disturbances are often encountered, even they can
degrade the system performance and possibly cause the sys-
tem instability, especially when the time delays and external
disturbances are not exactly known. Two main methods dealt
with the state delay problems, Lyapunov–Krasovskii func-
tional and Lyapunov–Razumikhin function methods, have been
well-developed for the tracking or regulation control of nonlin-
ear systems, where Lyapunov–Krasovskii functional method is
a simple and convenient means [16]–[18]. Because most real
multiagent systems contain inherent state delays, it is very nec-
essary to consider the time delay problem for the multiagent
system control design.

Neural networks (NNs) or fuzzy logical systems (FLSs)
have become an effective and powerful tools in the nonlin-
ear system modeling and controlling owing to the excellent
approximation and learning abilities. In the past decades, a
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great number of NN or FLS-based nonlinear control methods
have been published [19]–[26], in which [19]–[22] are based
on NN and [23]–[26] are based on FLS. In [19] and [22], the
NN dynamic surface technique-based adaptive tracking con-
trol is developed for the strict feedback systems. In [20], the
NN reinforcement learning is integrated into the output con-
trol of nonlinear strict feedback systems. In [23], the FLS
observer is constructed for the nonlinear systems to estimate
the unmeasured states. It is worth mentioning that a few NN
or FLS-based adaptive consensus approaches are proposed,
and they have received increasing attention [27]–[29] recently.
However, these adaptive consensus methods, for obtaining the
desired approximation accuracy, often require a large number
of adaptive parameters. Therefore, if these consensus methods
are applied to the practical engineering systems, it will result
in heavy online computational burden and be implemented
difficultly.

Motivated by above discussion, this paper addresses leader-
following consensus control for nonlinear multiagent time
delay systems. The main contributions in this paper are listed
as follows.

1) Compared with the existing research results, the pro-
posed consensus control method can alleviate the com-
putation burden because only a small number of adaptive
parameters are updated. It means that the proposed
agreement method can reduce the running cost and
easily apply to the practical multiagent engineering.

2) By employing the Lyapunov–Krasovskii functionals,
the impact coming from the unknown state delays is
compensated.

3) By employing the adaptive NN-based approximation
techniques, the difficulties coming from the unknown
nonlinear dynamics and external disturbances are well
overcome.

For convenience, the following notations are used through-
out this paper.

1) R represents real number; Rn denotes real m-dimensional
vector space; Rn×m is n × m-dimensional matrix space;
� is a subset of Rn; and In is n × n identity matrix.

2) ‖·‖ represents 2-norm of vector; ‖·‖F represents
Frobenius norm of matrix.

3) If there is no special explanation, T represents the
transposition symbol.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. System Description and Assumptions

Consider a class of nonlinear multiagent systems modeled
by the following differential equation:

ẋi(t) = fi(xi(t))+ gi(xi(t))ui(t)+ hi(xi(t − τi))+ di(t, xi)

i = 1, 2, . . . , n (1)

where xi(t) ∈ Rm is the state vector; ui(t) ∈ Rm is the control
input; fi(·), hi(·) : Rm → Rm are the smooth vector-value non-
linear functions with the uncertainties. The control gain matrix
gi(·) : Rm → Rm×m is a strictly either positive or negative def-
inite, of which each element is an unknown nonlinear function

or constant; τi is the unknown time delay; di(t, xi) ∈ Rm is the
unknown external disturbance.

The desired reference is described by the following equa-
tion, it is taken as the leader of nonlinear multiagent system (1)
in the control design:

ẋl(t) = fl(t) (2)

where xl ∈ Rm is the leader’s state and fl(t) ∈ Rm is a smooth
vector-value function.

In this paper, the control task is designing a consensus con-
trol scheme for the multiagent system (1) such that all agents
can synchronously track the desired trajectory to a desired
accuracy, i.e., limt→∞ ‖xi(t)− xl(t)‖ = 0 and i = 1, 2, . . . , n.

Assumption 1: For the unknown time delays τi, i =
1, 2, . . . , n, there exists a positive known constant τmax such
that τi ≤ τmax, i = 1, . . . , n [17].

Assumption 2: The nonlinear function fl(t) ∈ Rm of the
leader’s dynamic is bounded, i.e., ‖ fl(t)‖ < α, where α is
a positive constant [17].

In Assumption 2, the constant α is only for stability analysis,
its actual value is unnecessary to be known.

Assumption 3: For these terms hi(xi(t)), i = 1, 2, . . . , n,
there exist the known smooth functions �i(xi(t)) to satisfy
‖hi(xi(t))‖ ≤ �i(xi(t)) [30].

Assumption 4: For the disturbance dynamics di(t, xi), i =
1, 2, . . . , n, there exists the unknown continuous functions
pi(xi(t)) satisfying ‖di(t, xi)‖ ≤ pi(xi(t)) [17].

Assumption 5: There exist two positive or negative con-
stants, g

i
and ḡi, such that g

i
≤ λ1(gi(xi)), . . . , λm(gi(xi)) ≤

ḡi, i = 1, . . . , n, where λ1(gi(xi)), . . . , λm(gi(xi)) are all
eigenvalues of the matrix function gi(xi(t)). Without loss of
generality, it is assumed that λ1(gi(xi)), . . . , λm(gi(xi)) ≥ g

i
>

0, i = 1, . . . , n [17].

B. Algebraic Graph Theory

Let G := (ϒ, ε,A) denote a weight digraph, which is used to
describe the communication topology of the multiagent sys-
tem (1), where ϒ := {υ1, υ2, . . . , υn} denotes the node set;
ε ⊆ ϒ × ϒ denotes the edge set; and A = [aij] denotes
the adjacency matrix. The node υi represents the ith agent.
Let εij = (υi, υj) denote an edge of the weight graph G,
εij = (υi, υj) ∈ ε if and only if there is a communication
from agent j to agent i. We say node υj is a neighbor of node
υi if the edge εij = (υi, υj) ∈ ε. The neighbor set of node υi is
described by Ni := {υj‖(υi, υj) ∈ ε}. The adjacency element
aij corresponding to the edge εij denotes the communication
quality between the agents i and j, i.e., εij ∈ ε ⇔ aij > 0;
otherwise aij = 0. A weight graph G is called undirected if
and only if aij = aji. An undirected graph implies that node
υj is a neighbor of node υi if and only if node υi is also a
neighbor of node υj. Laplacian matrix L = [lij] ⊂ Rn×n for
the weight graph G is defined as

L := C − A (3)

where C = diag{c1, c2, . . . , cn}, ci = ∑n
j=1 aij. Obviously,

1n = [1, 1, . . . , 1]T ∈ Rn is an eigenvector associated with the
eigenvalue λ = 0.
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Let B := diag{b1, b2, . . . , bn} denote the communication
weight matrix between agents and leader. bi > 0 if and only
if there exists the information exchange between agent i and
leader, otherwise bi = 0. It is stipulated that at least one agent
connects with leader, i.e., b1 + b2 + · · · + bn > 0.

A sequence of edges of a graph G is called a path if it is
the form that (υi, υi1), (υi1 , υi2), . . . , (υil , υj). An undirected
graph is called connected if there is a path for any a pair of
distinct nodes. For a connected graph, all nonzero eigenvalues
of L are non-negative, and 0 is a simple eigenvalue of L [31].

C. Radial Basis Function Neural Networks
and Function Approximation

It has been proven that the radial basis function NNs
(RBFNNs) have the universal approximation and learning abil-
ities. Any unknown smooth function ψ(x) : Rn → Rm can be
approximated by RBFNNs in the following form:

ψ̂(x) = WTS(x)

where x ∈ �x ⊂ Rn, �x is a compact set, W ∈ Rq×m

is the adjustable weight matrix with the number of neurons
q, S(z) = [s1(x), . . . , sq(x)]T is the basis function vector,
si(x) = exp(−(x − νi)

T(x − νi)/ϕ
2
i ), i = 1, 2, . . . , q, νi =

[νi1, νi2, . . . , νin]T is the center of the receptive field, ϕi is the
width of the Gaussian function.

It is well known that RBFNNs can approximate a contin-
uous function to any desired accuracy by making the neuron
number q large enough and choosing the design parameters
appropriately. For the smooth function ψ(x), there exists an
ideal weights W∗ such that

ψ(x) = W∗TS(x)+ ε(x) (4)

where ε(x) ∈ Rm is the approximation error to satisfy
‖ε(x)‖ ≤ δ, δ is a positive constant. The NN approximation
error indicates the minimum possible deviation between the
ideal approximation W∗S(x) and the smooth unknown function
ψ(x).

In fact, the ideal NN weight matrix W∗ is an “artificial”
quantity just for analysis purposes and it needs to be estimated
in control design [32]. W∗ is defined as

W∗ := arg min
W∈Rp×m

{

sup
x∈�z

‖ψ(x)− WS(x)‖
}

. (5)

D. Supporting Lemmas

Lemma 1 [31]: An undirected graph G is connected if and
only if its Laplacian is irreducible.

Lemma 2 [33]: Let D = [dij] ∈ Rn×n be an irreducible
matrix such that dij = dji ≤ 0 for i = j and dii = −∑n

j=1 lij
for i = 1, 2, . . . , n. Then all eigenvalues of the matrix D̃ =⎡

⎢
⎣

d11 + θ1 · · · d1n
...

. . .
...

dn1 · · · dnn + θn

⎤

⎥
⎦ are positive, where θ1, θ2, . . . , θn

are non-negative constants and θ1 + θ2 + · · · + θn > 0.
Lemma 3 [34]: Let R(t) ∈ R be a continuous positive func-

tion with bounded initial value R(0). If the inequality holds

that Ṙ(t) ≤ −βR(t)+γ , where β and γ are positive constants,
then the following inequality is held:

R(t) ≤ R(0)e−βt + γ

β

(
1 − e−βt). (6)

III. MAIN RESULTS

In the work, the interconnection graph G of the nonlinear
multiagent system (1) is assumed to be an undirected con-
nected graph. Define the tracking error variable between the
ith agent and leader as ζ̄i(t) = xi(t)− xl(t). Based on the sys-
tem dynamic equations (1) and (2), the error dynamics are
obtained as

˙̄ζi(t) = fi(xi(t))+ gi(xi(t))ui(t)+ hi(xi(t − τi))

+ di(t, xi)− fl(t)

i = 1, 2, . . . , n. (7)

Define the consensus error vector for the ith agent as

ei(t) =
∑

j∈Ni

(
aij
(
xi(t)− xj(t)

)+ bi(xi(t)− xl(t))
) ∈ Rm

i = 1, 2, . . . , n (8)

where aij is the ith row and jth column element of the
adjacency matrix A; bi ≥ 0 is connection weight between
the ith agent and leader. Using the tracking error variable
ζ̄ (t)i = xi(t) − xl(t), the consensus error vector (8) can be
rewritten as

ei(t) =
∑

j∈Ni

(
aij
(
ζ̄i(t)− ζ̄j(t)

)+ biζ̄i(t)
) ∈ Rm. (9)

Define a scalar function as

V1(t) = 1

2
ζ̄ T(t)

(
L̃ ⊗ Im

)
ζ̄ (t) (10)

where ζ̄ = [ζ̄ T
1 (t), ζ̄

T
2 (t), . . . , ζ̄

T
n (t)]

T ∈ Rnm; L̃ = L + B,
B = diag{b1, b2, . . . , bn}. According to Lemma 2, V1(t) is a
positive definite function.

Because L̃ is a symmetrical positive definite matrix, it
has n positive eigenvalues that is denoted by λ1, λ2, . . . , λn.
Let χ11, . . . , χ1m, χ21, . . . , χ2m, . . . , χn1, . . . , χnm denote the
eigenvectors of the positive definite matrix L̃ ⊗ Im corre-
sponding to the eigenvalues λ1, λ2, . . . , λn respectively, they
can be chosen as a set of orthogonal bases of Rnm. Let
M = [χ11, . . . , χnm] ∈ Rnm×nm, then the equation that
MTM = MMT = Inm is held.

Based on above analysis, the scalar function, V1(t), can be
rewritten as

V1(t) = 1

2
ζ̄ T(t)

(
L̃ ⊗ Im

)
ζ̄ (t) = 1

2
ζ̄ T(t)MT�Mζ̄ (t)

= 1

2
ζ̄ T(t)MT��−1�Mζ̄ (t)

= 1

2
ζ̄ T(t)MT�MMT�−1MMT�Mζ̄ (t)

= 1

2
ζ̄ T(t)

(
L̃ ⊗ Im

)T
MT�−1M

(
L̃ ⊗ Im

)
ζ̄ (t)

= 1

2
eT(t)�e(t) (11)
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where ⊗ is Kronecker product, e(t) = [eT
1 (t), . . . e

T
n (t)]

T ∈
Rnm, � = diag{λ1Im, λ2Im, . . . , λnIm} and � = MT�−1M.

Based on (11), the following one can be obtained:
λmin(�)

2
‖e(t)‖2 ≤ V1(t) ≤ λmax(�)

2
‖e(t)‖2 (12)

where λmin(�) and λmax(�) are the smallest and largest
eigenvalues of matrix �, respectively.

Taking time derivative of V1(t) along (7) is

V̇1(t) = ζ̄ T(t)
(
L̃ ⊗ Im

) ˙̄ζ (t) =
n∑

i=1

eT
i (t)

˙̄ζ i(t)

=
n∑

i=1

(
eT

i (t)(gi(xi(t))ui(t)+ fi(xi(t))+ hi(xi(t − τi))

+ di(t, xi)− fl(t))
)
. (13)

Based on Assumptions 2–4, the following results can be
obtained by applying Cauchy inequality that (

∑n
i=1 xiyi)

2 ≤
(
∑n

i=1 x2
i )(
∑n

i=1 y2
i ):

− eT
i (t)fl(t) ≤ ‖ei(t)‖‖fl(t)‖ ≤ α‖ei(t)‖ (14)

eT
i (t)hi(xi(t − τi)) ≤ ‖ei(t)‖�i(xi(t − τi)) (15)

eT
i (t)di(t, x) ≤ ‖ei(t)‖pi(x(t)). (16)

Substituting (14)–(16) into (13), the following inequality can
be yielded:

V̇1(t) ≤
n∑

i=1

(
eT

i (t)gi(xi(t))ui(t)+eT
i (t)fi(xi(t))+ α‖ei(t)‖

+ ‖ei(t)‖�i(xi(t − τi))+ ‖ei(t)‖pi(x(t))
)
. (17)

Remark 1: In inequality (16), the unknown time delay τi

is an obstacle for the controller design. Although the scalar
function �i(xi(t)) is known, �i(xi(t − τi)) will become unde-
termined owing to the unknown delay τi. Because the unknown
time delay function �i(xi(t − τi)) and the consensus error ei(t)
are merged together, the problem become more complex for
the control design. Therefore, these related terms need to be
transformed to the form that the uncertain time delay term
�i(xi(t − τi)) and the consensus error ei(t) are separated.

Applying Young’s inequality, ab ≤ (a2/2) + (b2/2), the
following results can be yielded:

α‖ei(t)‖ ≤ ‖ei(t)‖2

2
+ α2

2
(18)

‖ei(t)‖�i(xi(t − τi)) ≤ ‖ei(t)‖2

2
+ �2

i (xi(t − τi))

2
(19)

‖ei(t)‖pi(x(t)) ≤ β2
i

2
+ ‖ei(t)‖2p2

i (xi(t))

2β2
i

(20)

where βi is a positive constant. Using (18)–(20), the inequal-
ity (17) can be rewritten as

V̇1(t) ≤
n∑

i=1

(

eT
i (t)gi(xi(t))ui(t)+ ‖ei(t)‖2 + eT

i (t)fi(xi(t))

+ 1

2β2
i

‖ei(t)‖2q2
i (xi(t))+ 1

2
�2

i (xi(t − τi))

)

+ 1

2

(
n∑

i=1

β2
i + nα2

)

. (21)

In inequality (21), ei(t) and �i(xi(t − τi)) are separated.
Then the following Lyapunov–Krasovskii functional is used
to eliminate the difficulties in the control design come from
the unknown time delay τi, i = 1, . . . , n:

V2(t) = 1

2

n∑

i=1

t∫

t−τi

�2
i (xi(s))ds. (22)

Taking time derivative of V2(t) is

V̇2(t) = 1

2

n∑

i=1

�2
i (xi(t))− 1

2

n∑

i=1

�2
i (xi(t − τi)). (23)

Obviously, V̇2(t) can compensate the uncertainties of the
inequality (21) derived from the time-delay τi, and thus the
design difficulty is eliminated. Choose Lyapunov function can-
didate for the dynamic systems (1) as Ve(t) = V1(t) + V2(t),
based on (21) and (23), its time derivative is

V̇e(t) = V̇1(t)+ V̇2(t)

≤
n∑

i=1

(

eT
i (t)gi(xi)ui + ‖ei(t)‖2 + eT

i (t)fi(xi)

+ 1

2β2
i

‖ei(t)‖2q2
i (xi)+ 1

2
�2

i (xi)

)

+ 1

2

(
n∑

i=1

β2
i + nα2

)

=
n∑

i=1

(

eT
i (t)gi(xi)ui + ‖ei(t)‖2 + eT

i (t)Qi(zi)+ 1

2
�2

i (xi)

)

+ 1

2

(
n∑

i=1

β2
i + nα2

)

(24)

where Qi(zi) = fi(xi)+ (1/2β2
i )ei(t)q2

i (xi); zi = {xi(t), ei(t)} ∈
�zi , �zi is a compact set.

Under the condition that all system functions are known,
Ve(t) can be chosen as Lyapunov function. In order to fin-
ish the control task, the desired controller ui, i = 1, . . . , n is
constructed in the following:

ui(t) =

⎧
⎪⎨

⎪⎩

−ki(t)ei(t)− g−1
i (xi)Qi(zi)

− 1
2g

i
e−1

i (t)�2
i (xi) ei(t) ∈ �0

φi

0 ei(t) ∈ �φi

(25)

where ki(t) ∈ R+, i = 1, . . . , n, g−1
i (xi) is the inverse of matrix

gi(xi), e−1
i (t) = ei(t)/‖ei(t)‖2, �φi = {zi|‖ei(t)‖ < φi} ⊂ �zi ,

�0
φi

= �zi −�φi , φi is an arbitrary small constant. �0
φi

is also
a compact set [17].

Remark 2: Because the term (1/2)e−1
i (t)�2

i (xi) is not well
defined at ei(t) = [0]m, the controller singularity problem may
occur when the term (1/2)e−1

i (t)�2
i (xi) is utilized to construct

the consensus controller. Therefore, the boundedness of the
control must be guaranteed. It need to be noted that the control
objective has been achieved when ei(t) = [0]m, so relaxing the
consensus tracking error converges to a “ball” is more practical
than origin [35].
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When ei ∈ �0
φi

, substituting the controller (25) into (24),
the following inequality is obtained:

V̇e ≤
n∑

i=1

(

− ki(t)e
T
i (t)gi(xi)ei(t)+ ‖ei(t)‖2

− eT
i (t)gi(xi)ei(t)

2g
i
‖ei(t)‖2

�2
i (xi(t))+ 1

2
�2

i (xi)

)

+ 1

2

(
n∑

i=1

β2
i + nα2

)

. (26)

Applying Assumption 5, above inequality can become

V̇e ≤ −
n∑

i=1

(
g

i
ki(t)− 1

)
‖ei(t)‖2 + 1

2

(
n∑

i=1

β2
i + nα2

)

. (27)

Let

ki(t) = γi

g
i

⎛

⎝λmax(�)

2
+ 1

2‖ei(t)‖2

t∫

t−τmax

�2
i (xi(s))ds + 1

γi

⎞

⎠

(28)

where γi > 0 is a design constant.
Substituting the controller gain (28) into (27) yields

V̇e ≤ −
n∑

i=1

γi

2
λmax(�)‖ei(t)‖2

−
n∑

i=1

γi

2

t∫

t−τmax

�2
i (xi(s))ds + 1

2

(
n∑

i=1

β2
i + nα2

)

≤ −γ
2
λmax(�)

n∑

i=1

‖ei(t)‖2 − γ

2

n∑

i=1

t∫

t−τmax

�2
i (xi(s))ds + η

(29)

where η = (1/2)(
∑n

i=1 β
2
i + nα2), γ = min{γ1, γ2, . . . , γn}.

Based on the inequality (12), the inequality (29) can be
rewritten as

V̇e ≤ −γV1 − γ

2

n∑

i=1

t∫

t−τmax

�2
i (xi(s))ds + η (30)

where τmax, �i(xi(t)), i = 1, . . . , n are known
from Assumptions 1 and 3, so the term
(1/2)

∑n
i=1

∫ t
t−τmax

�2
i (xi(s))ds does not contain any uncer-

tainty. Because �2
i (xi(t)), i = 1, . . . , n is positive, the

following inequality holds:

t∫

t−τmax

�2
i (xi(s))ds ≥

t∫

t−τi

�2
i (xi(s))ds. (31)

The inequality (30) can be rewritten as

V̇e ≤ −γV1 − γV2 + η = −γVe + η. (32)

Applying Lemma 3, the following result can be obtained:

Ve(t) ≤ η

γ
+
(

Ve(0)− η

γ

)

e−γ t. (33)

The inequality (33) implies the tracking error ζ̄i(t), i =
1, . . . , n can be decreased to small enough by choosing the
appropriate design parameters γi, i = 1, . . . , n.

Because fi(·), pi(·) are completely unknown so that Qi(zi)

are also unknown, the proposed controller (25) cannot be
applied to the multiagent system (1). On the other hand,
because Qi(zi) is continuous and well-defined on the compact
set �0

φi
, Qi(zi) can be approximated to a desired accuracy by

RBFNNs in the following form:

Qi(zi) = W∗
i Si(zi)+ εi(zi) (34)

where W∗
i ∈ Rm×qi is the ideal NN weight matrix, qi denotes

the number of neurons, Si(zi) ∈ Rqi are the basis functions,
εi ∈ Rm is approximation error satisfying ‖εi‖ ≤ δi, and δi is
a positive constant.

Based on above analysis, the adaptive consensus control
laws for the nonlinear multiagent system (1) are designed as

ui(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ki(t)ei(t)− ξi

g
i

ŵi(t)‖Si(zi)‖2ei(t)

− 1

2g
i

e−1
i (t)�2

i (xi) ei(t) ∈ �0
φi

0 ei(t) ∈ �φi

(35)

where ŵi(t) is the estimation of the unknown adaptive constant
w∗

i , w∗
i = ‖W∗

i ‖2
F .

The adaption laws are designed as

˙̂wi(t) = κi

(
ξi‖Si(zi)‖2‖ei(t)‖2 − σiŵi(t)

)
(36)

where κi, ξi, σi > 0, i = 1, . . . , n are the design constants.
Remark 3: The σ − modification term σiŵi(t), i = 1, . . . , n

are used to improve robustness of the NN approximators, it can
reduce a high gain control scheme for the case that estimates
ŵi(t) might shift to very high values [30].

Remark 4: In order to enhance the approximation accuracy,
most existing approximator-based adaptive consensus control
approaches require the neuron or fuzzy rule number large
enough [27], [34] so that the online computational burden
becomes very heavy. In the proposed controller, only a scalar
adaptive parameter, a norm form of the NN weight matrix, is
updated online for every agent. Because the computation bur-
den is greatly reduced, it can be conveniently applied to the
practical multiagent systems.

Remark 5: According to the updating law (36), for
any bounded initial condition ŵi(0) ≥ 0, if ŵi(t) ≤
ξi‖Si(zi)‖2‖ei(t)‖2/σi, then ˙̂wi(t) ≥ 0, thus ŵi(t) is increased
until ŵi(t) = ξi‖Si(zi)‖2‖ei(t)‖2/σi; similarly, if ŵi(t) >

ξi‖Si(zi)‖2‖ei(t)‖2/σi, ŵi(t) is decreased until ŵi(t) =
ξi‖Si(zi)‖2‖ei(t)‖2/σi. Therefore, (36) implies that ŵi(t) ≥
0 can be guaranteed for any bounded and positive initial
condition of ŵi(0).

The main result is summarized in the following theorem.
Theorem 1: Consider the nonlinear multiagent system (1)

with the leader (2). If Assumptions 1–5 are satisfied, then the
control protocol (35) with the adaptive NN updating law (36)
can guarantee that the leader-following consensus is achieved
for the bounded initial conditions xi(0) and ŵi(0). The control
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gain, ki(t) = ki0 + ki1(t), is designed as

ki0 ≥ 2

g
i

ki1(t) = γi

2g
i

⎛

⎝λmax(�)+ 1

‖ei‖2

t∫

t−τmax

�2
i (xi(s))ds

⎞

⎠ (37)

where γi > 0 is a design constant.
Proof: see Appendix A

IV. SIMULATION EXAMPLES

In order to further demonstrate the effectiveness of the
proposed consensus method, two simulation examples, a
numerical multiagent example and a practical multimanipu-
lator example, are carried out. In the two examples, every
multiagent system has six agents. In the two agreement con-
trol design, the same RBF NN, the Laplacian matrix and time
delays are chosen for simplicity, which are described in the
following.

RBFNN is designed 36 nodes and centers νi evenly
distribute in range [ − 6, 6] × [ − 6, 6], and the widths
ϕi = 2. Si(zi) = [s1(zi), . . . , s36(zi)]T with sj(zi) =
exp [−(zi − νj)

T(zi − νj)/ϕ
2
j ], j = 1, 2, . . . , 36, and the NN

adaptive parameters ŵi, i = 1, . . . , 6 are updated by (36) and
the initial values ŵi(0) = 0, i = 1, . . . , 6.

The communication weights between the six agents and
leader are B = diag{0, 0.9, 0, 0.9, 0, 0}, and Laplacian matrix
L is

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.3 −0.7 0 0 0 −0.6
−0.7 1.5 −0.8 0 0 0

0 −0.8 1.7 −0.9 0 0
0 0 −0.9 1.6 −0.7 0
0 0 0 −0.7 1.5 −0.8

−0.6 0 0 0 −0.8 1.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The time delays are τ1 = 1.4, τ2 = 1.5, τ3 = 1.6,
τ4 = 1.7, τ5 = 1.8, τ6 = 1.9, and τmax = 2.

Example 1: The nonlinear multiagent time-delay systems
are described as follows:

d

dt

[
xi1
xi2

]

=
[

xi2(t) sin(αi1xi1(t))
xi1(t) cos

(
αi2x2

i2(t)
)
]

+
(

1 + cos(xi1(t)) sin
(

x2
i2(t)

))
ui

+
[

hi1(xi(t − τi))

hi2(xi(t − τi))

]

+
[

di1(t, xi)

di2(t, xi)

]

(38)

where hi1(xi(t)) = βi1xi1(t) cos(xi2(t)), hi2(xi(t)) =
βi2xi2(t) sin(xi1(t)), di1(t, x) = γi1x2

i1(t) cos(1.5t), and
di2(t, x) = γi2(x2

i1(t) + x2
i2(t)) sin(t). αi1, αi2, βi1, βi2, γi1,

and γi2 are shown in Tables I–III. The initial positions of
six agents are x1(0) = (2, 0)T , x2(0) = (1.5, 1.5)T , x3(0) =
(−1.5, 1)T , x4(0) = (−2,−1)T , x5(0) = (−1,−1.5)T , and
x6(0) = (1,−2)T .

The leader’s dynamic is described as

d(xl(t))

dt
=
[

8 sin(8tπ)− 16 cos(8tπ)
4 cos(8tπ)+ 16 sin(8tπ)

]

. (39)

TABLE I
VALUES OF αi1, αi2, i = 1, . . . , 6

TABLE II
VALUES OF βi1, βi2, i = 1, . . . , 6

TABLE III
VALUES OF γi1, γi2, i = 1, . . . , 6

Fig. 1. Leader’s trajectory.

Apparently, Assumption 3 can be satisfied by choosing

�i(xi) =
√

(βi1xi1)
2 + (βi2xi2)

2 and Assumption 4 can be

satisfied by choosing pi(xi) =
√

γ 2
i1x4

i1 + γ 2
i2(x

2
i1 + x2

i2)
2
.

The adaptive NN controller ui, i = 1, . . . , n are given
by (35) and φi = 10−7, i = 1, . . . , 6. The control gain
ki(t) = ki0 + ki1(t) is designed as ki0 = 650 and ki1(t) is
given by (37) with γi = 1/6, i = 1, . . . , 6. The correlation
coefficients for the update laws are κi = 0.4, ξi = 2, σi = 0.2,
i = 1, . . . , 6.

Fig. 1 gives leader’s trajectory. Figs. 2–4 show the sim-
ulation results applying the proposed consensus method to
the systems (38). Figs. 3 and 4 display the leader-following
agreement for the system (38) to be achieved.

Example 2: In this example, a multimanipulator example is
carried out to test the effectiveness of the proposed consensus
control scheme. The consensus control of the multimanipulator
systems can be applied on many practical work occasions, for
example, holding up a weight or loading a workpiece. The
manipulator profile is shown in Fig. 5 and the system dynamic
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Fig. 2. Trajectory of six agents.

Fig. 3. First coordinate of leader and six agents.

Fig. 4. Second coordinate of leader and six agents.

is described as

q̇i1 = qi2

Mi(qi1)q̇i2 + Vi(qi1, qi2)qi2 + Gi(qi1)+ fi(qi2(t − τi)) = ζi

i = 1, . . . , 6 (40)

where qi1, qi2 ∈ R2 denote the position and
velocity state vectors of joints respectively;

Mi(qi1) =
[

Mi11 Mi12
Mi21 Mi22

]

∈ R2×2 is the inertia matrix

with Mi11 = (mi1 + mi2)r2
i1 + 2mi2ri1ri2 cos(qi12),

Fig. 5. Two-link revolute manipulator.

TABLE IV
VALUES OF αi1, αi2, i = 1, . . . , 6

TABLE V
VALUES OF βi1, βi2, i = 1, . . . , 6

Mi12 = Mi21 = mi2r2
i2 + mi2ri1ri2 cos(qi12), Mi22 = mi2r2

i2;

Vi(qi1, qi2) =
[

Vi11 Vi12
Vi21 Vi22

]

∈ R2×2 is the centripetal and

Coriolis matrix with Vi11 = −mi2ri1ri2 sin(qi12)qi22, Vi12 =
−mi2ri1ri2 sin(qi12)(qi21 + qi22), Vi21 = mi2ri1ri2 sin(qi12)qi21,
Vi22 = 0; Gi = (Gi11,Gi12)

T ∈ R2 is gravitational vector
with Gi1 = (mi1 + mi2)gri1 sin(qi11)+ mi2gri2 sin(qi11 + qi12),
Gi2 = mi2gdi2 sin(qi11 + qi12); fi(qi2(t)) = (αi1qi21 +
βi1sgn(qi21), αi2qi22 + βi2sgn(qi22))

T is the friction force
vector, αi1, αi2, βi1, βi2 are shown in Tables IV and V;
ζi ∈ R2 is manipulator’s torque input vector. The correlation
parameters of the manipulators’ dynamic are g = 9.8 m/s2,
ri1 = 1.6 m, ri2 = 1.1 m, mi1 = 1.1 kg and mi2 = 2.1 kg,
(i = 1, . . . , 6). The initial joint velocities of six manipulators
show in Table VI.

Leader dynamic can be described as

q̇1d = q2d

q̇2d = [4 cos(4t)+ 2 cos(6t),−2 sin(4t)− 4 cos(6t)]T .

In the example, the consensus controllers are designed only
for synchronizing the joint velocity qi2, i = 1, . . . , 6 to leader’s
velocity q2d.
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TABLE VI
INITIAL VALUES OF qi21, qi22, i = 1, . . . , 6

Fig. 6. Velocity trajectory of the first joint.

Fig. 7. Velocity trajectory of the second joint.

The consensus controller and the adaptive update law are
given by (35) and (36), respectively. The correlation coeffi-
cients are chosen as ki0 = 400, γi = 1/16, κi = 12, ξi = 12,
σi = 4, and φi = 10−7, i = 1, . . . , 6.

Figs. 6 and 7 display the simulation results by applying the
proposed consensus control scheme to the multimanipulator
system (40). They show that the velocity states of the mul-
timanipulator system synchronize to leader’s velocity, which
means that the proposed method can guarantee a good tracking
performance.

Remark 6: If the current NN consensus methods are applied
to the two examples, for instance, the consensus method
of [27], the NN weight matrices must be 36× 2-dimensional,
it means that the consensus algorithm needs to update 72
adaptive parameters online for every agent, so the online com-
putation burden will be heavy and the online computation time
will be long. However, if the proposed approach is applied
to the nonlinear multiagent (32), only an adaptive parameter

is updated for each agent, from the practical viewpoint, the
running cost will be greatly decreased.

V. CONCLUSION

In this paper, an adaptive leader-following consensus
approach is developed. Because the external disturbances and
time delays are considered in the nonlinear multiagent sys-
tems, the proposed consensus scheme is more practical and
can be applied more widely than the existing agreement
methods. In order to finish the control task, the nonlinear
uncertainties are counteracted by employing RBFNNs; the
state delays are compensated by choosing the appropriate
Lyapunov–Krasovskii functional. A remarkable contribution
of the work is that the computation burden is alleviated by
only updating a small number of adaptive parameters. Finally,
the system stability and tracking error convergence are proven
by using Lyapunov stability theory. Simulation results further
verified the feasibility of the proposed approach.

APPENDIX

Proof: For the case of ei(t) ∈ �0
φi

, choose Lyapunov
function candidate as

V(t) = V1(t)+ V2(t)+ 1

2

n∑

i=1

κ−1
i w̃2

i (t) (41)

where w̃i(t) = ŵi(t)− w∗
i .

Taking the time derivative of (41) along (24) is

V̇ ≤
n∑

i=1

(

eT
i (t)gi(xi)ui + ‖ei(t)‖2 + eT

i (t)Qi(zi)+ 1

2
�2

i (xi)

)

+
n∑

i=1

κ−1
i w̃i(t) ˙̂wi(t)+ 1

2

(
n∑

i=1

β2
i + nα2

)

(42)

where Qi(zi) = fi(xi)+ (1/2β2
i )ei(t)q2

i (xi).
Substituting (34) into (42) yields

V̇(t) ≤
n∑

i=1

(

eT
i (t)gi(xi)ui + ‖ei(t)‖2 + eT

i (t)W
∗
i Si(zi)

+ eT
i (t)εi(zi)+ 1

2
�2

i (xi)

)

+
n∑

i=1

κ−1
i w̃i(t) ˙̂wi(t)

+ 1

2

(
n∑

i=1

β2
i + nα2

)

. (43)

Apply the following facts that

eT
i (t)W

∗
i Si(zi) ≤ ξi‖ei(t)‖2

∥
∥W∗

i Si(zi)
∥
∥2 + 1

4ξi

≤ ξiw
∗
i ‖Si(zi)‖2‖ei(t)‖2 + 1

4ξi
(44)

where ξi is a positive design constant,

eT
i (t)εi(zi) ≤ ‖ei(t)‖2 + ‖εi(zi)‖2

4
≤ ‖ei(t)‖2 + δi

2

4
, (45)



WEN et al.: NN-BASED ADAPTIVE LEADER-FOLLOWING CONSENSUS CONTROL 2159

the inequality (43) can be rewritten as

V̇(t) ≤
n∑

i=1

(

eT
i (t)gi(xi)ui + 2‖ei(t)‖2 + ξiw

∗
i ‖Si(zi)‖2‖ei(t)‖2

+ 1

2
�2

i (xi)

)

+
n∑

i=1

κ−1
i w̃i(t) ˙̂wi(t)

+
n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4

)

+ 1

2
nα2. (46)

Substituting the controller (35) and adaptive law
(36) into (46) has

V̇(t) ≤
n∑

i=1

(

−ki(t)e
T
i (t)gi(xi)ei(t)

− ξi

g
i

ŵi(t)‖Si(zi)‖2eT
i (t)gi(xi)ei(t)

− eT
i (t)gi(xi)ei(t)

2g
i
‖ei(t)‖2

�2
i (xi)+ 2‖ei(t)‖2

+ ξiw
∗
i ‖Si(zi)‖2‖ei(t)‖2 + 1

2
�2

i (xi)

)

+
n∑

i=1

w̃i(t)
(
ξi‖Si(zi)‖2‖ei(t)‖2 − σiŵi(t)

)

+
n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4

)

+ 1

2
nα2. (47)

Based on Assumption 5 and Remark 5, (47) can become the
following one:

V̇(t) ≤
n∑

i=1

(
−ki(t)e

T
i (t)gi(xi)ei(t)+ 2‖ei(t)‖2

− ξiŵi(t)‖Si(zi)‖2‖ei(t)‖2 + ξiw
∗
i ‖Si(zi)‖2‖ei(t)‖2

)

+
n∑

i=1

w̃i(t)
(
ξi‖Si(zi)‖2‖ei(t)‖2 − σiŵi(t)

)

+
n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4

)

+ 1

2
nα2

≤ −
n∑

i=1

((
g

i
ki(t)− 2

)
‖ei(t)‖2

)
−

n∑

i=1

σiw̃i(t)ŵi(t)

+
n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4

)

+ 1

2
nα2. (48)

Based on the fact that w̃i(t)ŵi(t) = (1/2)w̃2
i (t)+ (1/2)ŵ2

i (t)−
(1/2)w∗2

i , the following results can be obtained:

− σiw̃i(t)ŵi(t) ≤ −1

2
σiw̃

2
i (t)+ 1

2
σiw

∗2
i

i = 1, . . . , n. (49)

The inequality (48) can be rewritten as

V̇(t) ≤ −
n∑

i=1

(
g

i
ki(t)− 2

)
‖ei‖2 −

n∑

i=1

σiw̃
2
i (t)

+
n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4
+ 1

2
σiw

∗2
i

)

+ 1

2
nα2. (50)

From the inequality (37), the inequality (50) can be further
rewritten as

V̇(t) ≤ −
n∑

i=1

γi

2
λmax(�)‖ei(t)‖2 −

n∑

i=1

γi

2

t∫

t−τmax

�2
i (xi(s))ds

−
n∑

i=1

σiw̃
2
i (t)+

n∑

i=1

(
1

2
β2

i + 1

4ξi
+ δi

2

4

+ 1

2
σiw

∗2
i

)

+ 1

2
nα2

≤ − η̄
2

n∑

i=1

λmax(�)‖ei(t)‖2 − η̄

2

n∑

i=1

t∫

t−τmax

�2
i (xi(s))ds

− η̄

n∑

i=1

κ−1
i w̃2

i (t)+ θ̄ (51)

where η̄ = min {γ1, . . . , γn, σ1κ1, . . . , σnκn}, θ̄ =∑n
i=1 ((1/2)β

2
i + (1/4ξi)+ (δi

2/4)+ (1/2)σiw∗2
i )+(1/2)nα2.

Obviously, θ̄ is a positive constant relying on design
parameters.

Based on (12) and (31), the inequality (51) can be
rewritten as

V̇(t) ≤ −η̄V1(t)− η̄V2(t)− η̄

n∑

i=1

κ−1
i w̃2

i (t)+ θ̄

≤ −η̄V(t)+ θ̄ . (52)

According to Lemma 3, the following inequality can be
obtained:

V(t) ≤ θ̄

η̄
+
(

V(0)− θ̄

η̄

)

e−η̄t. (53)

It implies that a better consensus tracking performance can be
obtained by increasing the gains γi and κi appropriately.

For the case of ei ∈ �φi , because φi is designed to be
an arbitrarily small constant, from the inequality (12), it can
be directly concluded that the leader-following consensus has
arrived.
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Artificial Potential-Based Adaptive H∞
Synchronized Tracking Control for

Accommodation Vessel
Guoxing Wen, Shuzhi Sam Ge, Fellow, IEEE, Fangwen Tu, and Yoo Sang Choo

Abstract—Combining with artificial potential field and
robust H∞ methods, the neural network (NN)-based adap-
tive synchronized tracking control is proposed for ac-
commodation vessel (AV). The control task is to drive
AV synchronous tracking floating production storage and
offloading (FPSO). For finishing the task, NN is employed to
approximate the unknown nonlinear dynamics of AV; H∞
method is to guarantee the system states of AV robust to
exogenous disturbances; artificial potential method aims
to produce the attractive and repulsive forces to assist AV
maintaining desired distance with FPSO so that the gang-
way connecting both AV and FPSO is operated smoothly.
Finally, it is proven that the proposed control scheme can
guarantee that all error signals of the tracking control are
Semi-Globally Uniformly Ultimately Bounded (SGUUB) and
AV can synchronously track FPSO to desired accuracy. The
simulation results further demonstrate the effectiveness of
the proposed method.

Index Terms—Accommodation vessel (AV), artificial
potential, neural network (NN), robust H� control, synchro-
nized tracking control.

I. INTRODUCTION

W ITH the increasing demand for exploration and exploita-
tion of offshore oil and gas, more and more offshore

operations have to take place in deeper water area. In order
to ensure smooth operation for such offshore work, floating
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Fig. 1. AV-FPSO system.

production storage and offloading (FPSO) shown in Fig. 1 as
working platform always requires the accompany of accommo-
dation vessels (AVs), which are used for providing the space for
logistic support and opened deck. Since personnel transporta-
tion and equipment transfer between AV and FPSO are achieved
by the gangway shown in Fig. 1, AV must be controlled to syn-
chronously track FPSO for finishing these operations smoothly.

Since neural networks (NNs) and fuzzy logic systems (FLSs)
have universal approximation ability, which can approximate
any smooth nonlinear function to desired accuracy, they have
become powerful tools in adaptive nonlinear control. In the past
years, many remarkable control schemes using NN or FLS are
suggested and received considerable attention, such as [1], [2].
In [1], Rastovic proposes an adaptive recurrent NN synchroniza-
tion of H-mode and edge-localized mode. Deterministic part of
the plasma behavior should be synchronized with stochastic part
by introducing stochastic artificial NN. In [2], combined with
fuzzy logic and Vlasov–Poisson–Fokker–Planck equations, sta-
bility of the tokamak plasma behavior is investigated by the
scaling method and Lyapunov functional. Recently, several NN
or FLS approximator-based adaptive control methods concern-
ing surface vessel are reported [3]–[8]. In [3], a new NN control
is applied to surface vessel control. A significant benefit of the
method is that control quality is improved by applying a velocity
term besides position term. In [4]–[7], based on NN approxi-
mation and backstepping technique, several full-state feedback
controls are addressed to tackle system uncertainty problem.
According to the Lyapunov stability theory, it is proven that
these proposed control methods can guarantee control objective
to be achieved. In [8], FLS is applied to dynamic positioning of

0278-0046 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



WEN et al.: ARTIFICIAL POTENTIAL-BASED ADAPTIVE H∞ SYNCHRONIZED TRACKING CONTROL FOR ACCOMMODATION VESSEL 5641

drill vessel. The proposed fuzzy controller is very simple and
does not require the mathematical model of complicated non-
linear system. Finally, the effectiveness of the fuzzy controller
are demonstrated by a numerical time-domain simulation.

However, the above control approaches are applied to sur-
face vessel with less regard for the improvement of system
robustness. In real marine environment, there exist multiple dis-
turbances, such as wind, wave, swell, and current [9], it is very
necessary to consider system robustness in control design. Usu-
ally, in order to obtain good system robustness, H∞ control
strategy is naturally considered. Basic idea of the control strat-
egy is to design a control law for dynamic system so that the
gain of mapping from exogenous input to measurable output
is minimized or is no larger than a certain prescribed level. In
the past few decades, NN- or FLS-based H∞ control has at-
tracted increasing attentions, and many remarkable research re-
sults have been reported, for example, [10]–[14]. In [10], robust
nonlinear control approach and direct adaptive NN technique
are integrated together to construct a new robust learning con-
troller for simultaneous position and force control of uncertain
constrained manipulator. In [11] and [12], fuzzy-based H∞ tech-
nique is applied to uncertain nonlinear system. In [13] and [14],
the robust H∞ controls are addressed for the nonlinear stochastic
systems.

In the last decades, artificial potential field methods have been
extensively investigated and widely applied due to its simplicity
and effectiveness. Artificial potential field methods are to fill
potential field to workspace so that gradient acting can attract
toward the global minimum and repel from the local maxima.
Its wide applications can be found in network topology con-
trol, robot navigation control, formation control, etc. [15]–[18].
In [15], potential field-based approach is employed to solve
the problem of deploying a mobile sensor network in an un-
known environment. In [16], artificial potential field method is
proposed to deal with unique real-time obstacle avoidance prob-
lem for manipulators and mobile robots. In [17], by encoding
freespace and goal information to a special artificial potential
function, Rimon and Koditschek present a new methodology
for exact robot motion planning and control. In [18], artificial
potential function and robust control technique are combined
for constructing decentralized multiagent formation control
scheme.

Motivated by the above discussion, for AV-FPSO system con-
trol, it not only requires AV to track FPSO synchronously, but
also must guarantee the distance between AV and FPSO in safe
range so that the gangway is operated smoothly. Nevertheless,
the existing methods, such as [3]–[8], are not specially designed
for AV-FPSO systems because these control algorithms do not
consider the requirement of operating gangway. The challeng-
ing problem is addressed in the paper, the main contributions
are summarized in the following.

1) Most previous surface vessel control methods are con-
structed based on backstepping technique [5]–[7]. Since
virtual controller is required, these backstepping-based
surface vessel control can only guarantee the posi-
tion tracking, and it is difficult to ensure the velocity
consensus. Because the proposed AV controller is de-

Fig. 2. Three horizontal degrees-of-freedom of surface vessel.

signed to contain both position and velocity control terms,
it can steer AV to synchronously track to FPSO.

2) In order to ensure the gangway operating smoothly, ar-
tificial potential field method is applied to the proposed
synchronized tracking control. Therefore, the risk of dam-
aging the gangway is significantly reduced.

3) By applying the H∞ control strategy, the good system
robustness is guaranteed.

Finally, a simulation is carried out on a scale-down replica
of AV to further demonstrate the effectiveness of the proposed
scheme.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider the surface vessel modeled by the following dy-
namic, which is depicted in three degree-of-freedom that are
surge, sway, and yaw, respectively (shown in Fig. 2) [19]

η̇ (t) = J (η) v (t) ,

Mv̇ (t) = −C (v) v (t)−D(v)v (t)−g (η (t))−Δ(t)+τ (t)

(1)

where η (t) = [x (t) , y (t) , z (t)]T ∈ R3 is the state vector, of
which x (t) , y (t), and z (t) are the position and head states, re-
spectively; v (t) = [vx (t) , vy (t) , vz (t)]T ∈ R3 is the velocity
vector, of which vx (t) , vy (t) , vz (t) are the surge, sway, yaw
velocities, respectively;

J (η) =

⎡
⎣

cos (z) − sin (z) 0
sin (z) cos (z) 0

0 0 1

⎤
⎦ ∈ SO(3),

i.e., J−1 (η) = JT (η), is the rotation matrix for coordinate
transforming between the vessel-fixed and earth-fixed frames;
g (η) ∈ R3 is the restoring force vector in the presence of gravity
and buoyancy; Δ(t) ∈ R3 is the external disturbances, which
has the property of Δ(t) ∈ L2 [0, tp ], where ∀tp ∈ [0,∞) is the
operating time for the system; τ (t) ∈ R3 is the control input.
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Assumption 1: The position state η (t) and velocity state
v (t) are measurable without any noises, and they can reflect
real states of the vessel.

Let {X(·) , Y(·) , N(·)} denote the hydrodynamic parameters
[20] and m denote the mass of AV and xg denote the x coordinate
value of gravity center in vessel-fixed frame. Then, all terms of
AV dynamic model (1) are detailed in the following.

M = MT is the system inertia matrix, and is specified as

M =

⎡
⎣

m11 0 0
0 m22 m23
0 m32 m33

⎤
⎦ > 0

where m11 = m − Xẋ , m22 = m − Yẏ ,m33 = Iz − Nż ,
m23 = mxg − Yż , m32 = mxg − Nẏ , and Yż = Nẏ .

C (v) = −CT (v) is the Coriolis and centripetal matrix, and
is specified as

C (v) =

⎡
⎣

0 0 c13
0 0 c23

−c13 −c23 0

⎤
⎦

where c13 = −m22vy − 1
2 (m23 + m32)vz , c23 = m11vx .

D (v) is the damping matrix specified as

D (v) =

⎡
⎣

d11 0 0
0 d22 d23
0 d32 d33

⎤
⎦

where d11(v) = −Xx − X|x|x |vx | − Xxxxv2
x , d22(v) =

−Yy − Y|y |y |vy | − Y|z |y |vz |, d33(v) = −Nz − N|y |z |vy | −
N|z |z |vz |, d23(v) = −Yz − Y|y |z |vy | − Y|z |z |vz |, d32(v) =
−Ny − N|y |y |vy | − Y|z |y |vz |.

Define ν (t) = J (η) v (t), then the dynamic model (1) can be
rewritten as

η̇ (t) = ν (t) ,

ν̇ (t) = Cg (η, ν) ν (t) + Dg (η, ν) ν (t)

+ gg (η (t)) + Δg (t) + τg (t) (2)

where Cg (η, ν) = −J (η)M−1C
(
J−1 (η) ν

)
J−1 (η),

Dg (η, ν) = J̇ (η)J−1 (η) − J (η)M−1D(J−1 (η) ν)J−1 (η),
gg (η) = −J (η)M−1g (η), Δg (t) = −J (η)M−1Δ (t) ∈
L2 [0, tp ], τg (t) = J (η)M−1τ (t).

Let ηr (t), η̇r (t), and η̈r (t) denote the position,
velocity, and acceleration of FPSO, where ηr (t) =
[xr (t), yr (t), zr (t)]T ∈ R3 . ηr (t), η̇r (t), and η̈r (t) are as-
sumed known and treated as the reference signals followed
by AV.

Control objective: Based on the universal approximation
property of NN, design an adaptive H∞ control, such that all er-
ror states of the tracking control are SGUUB, while the position
and velocity states of AV track FPSO states to desired accuracy.
Meanwhile, artificial potential field method is employed to as-
sist AV keeping the desired distance with FPSO for operating
the gangway smoothly.

Remark 1: In order to achieve the control objective, the con-
trol protocol is designed for the dynamic model (2), so the
desired controller is first obtained in earth-fixed frame. Then,

the controller for the original dynamic model (1) can be obtained
by left multiplying the matrix MJ−1 (z).

Lemma 1: ([21]) Let V (t) ∈ R be a continuous positive
function, and its initial value, V (0), is bounded. If V̇ (t) ≤
−βV (t) + α is satisfied, where β and α are positive constants,
then the following inequality is held:

V (t) ≤ e−βtV (0) +
α

β

(
1 − e−βt

)
.

B. NNs and Function Approximation

It has been proven that radial basis function neural network
(RBFNN) has excellent approximation and learning abilities. A
continuous nonlinear function ϕ (z) : Rn → Rm defined on a
compact set Ωz can be approximated by RBFNN in the follow-
ing form:

ϕNN (z) = WT S (z) (3)

where W ∈ Rp×m is the adjustable weight matrix, and p is
the neuron number; S (z) = [s1 (z) , . . . , sp (z)]T is the basis

function vector, si (z) = exp
[
− (z − μi)

T (z − μi) /φ2
i

]
, i =

1, 2, . . . , p, μi = [μi1 , μi2 , . . . , μin ]T is the center of the recep-
tive field, φi is the width of the Gaussian function, z ∈ Ωz ⊂ Rn

is the input vector.
Based on the approximation (3), the continuous vector func-

tion ϕ (z) can be re-expressed as

ϕ (z) = W ∗T S (z) + ε(z) (4)

where W ∗ is the ideal weight; ε(z) ∈ Rm is the approximation
error, and satisfies ‖ε(z)‖ ≤ δ, where δ is a positive constant.

The NN approximation error indicates the minimum possible
deviation between the optimal approximator W ∗T S (z) and the
unknown function ϕ (z). The ideal NN weight matrix W ∗ is
defined in the following:

W ∗ := arg min
W ∈Rp ×m

{
sup
z∈Ωz

‖ϕ (z) − WS (z)‖
}

. (5)

In fact, W ∗ is an “artificial” quantity only for analysis purposes,
and it needs to be estimated for the control design [22].

It has been demonstrated that the NN approximation can
arrive any desired accuracy if the NN node number is large
enough [22]. It implies that ‖ε(z)‖ can be reduced to desired
smallness if p is sufficiently large.

C. Artificial Potentials Functions

In this paper, artificial potential field methods are employed
for controlling AV to keep safe distance with FPSO so that the
smooth gangway operation is obtained. The artificial potential
is composed of both attractive and repulsive potentials. The
corresponding attractive and repulsive forces are produced along
with negative gradient direction of the attractive and repulsive
potential fields.

Define the relative distance variable d (t) between AV and
FPSO as

d (t) = η (t) − ηr (t) . (6)

The potential function based on the relative position variable is
defined as follows.
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Definition 1 ([23], [24]): The potential function P (d (t)) ∈
R is a nonnegative, differentiable, radially unbounded function
such that

P (d (t)) → ∞ when ‖d(t)‖ → ∞;
P (d (t)) → ∞ when ‖d(t)‖ → 0
P (d (t)) attains its unique minimum when d (t) is located at

the ideal distance.
The total potential function P (d (t)) is designed as

P (d (t)) = Pa (d (t)) + Pr (d (t)) (7)

where Pa (d (t)) and Pr (d (t)) denote the attractive and repul-
sive potential functions, respectively.

The attractive and repulsive forces are derived from the neg-
ative gradient of the attractive and repulsive functions, respec-
tively. Then, the total potential force is given as follows:

σ (d) = σa (d) + σr (d) = −∇Pa (d) −∇Pr (d) (8)

where σa (d) = −∇Pa (d) is the attractive force; σr (d) =
−∇Pr (d) is the repulsive force; ∇ denotes the gradient cor-
responding to the distance vector d(t).

The desired distance d0 between AV and FPSO (the length
of the gangway) is designed to be the equilibrium point be-
tween the attractive and repulsive forces, i.e., σa = −σr when
‖d(t)‖ = d0 . In order to steer AV to keep the desired distance
with FPSO, it is requested that the attractive force is bigger
than the repulsive force, i.e., σa > −σr , when ‖d(t)‖ > d0
implied that AV is moving away from FPSO; the attractive
force is smaller than the repulsive force, i.e., σa < −σr , when
‖d(t)‖ < d0 implied that AV is closing to FPSO. By integrating
the artificial potentials into the synchronized tracking control
design, the distance between AV and FPSO can be kept in the
desired range.

III. MAIN RESULTS

Define the tracking error vectors as eη (t) = η(t) − ηr (t) −
c(t), eν (t) = ν(t) − η̇r (t) − ċ(t), where c(t) is the desired rel-
ative distance variable between AV and FPSO, and ċ(t) is its
derivative. Then, the error dynamics can be obtained from (2)
as follows:

ėη (t) = eν (t), ėν (t) = f(z (t)) + Δg (t) + τg (t) (9)

where f(z (t))=Cg (η, ν) ν (t)+Dg (η, ν) ν (t)+gg (η (t)) −
η̈r (t) − c̈(t) ∈ R3 , z (t) = [ηT (t) , ηT

r (t) , νT (t) , η̇T
r (t) ,

η̈T
r (t)]T ∈ Ω, Ω ⊂ R15 is a compact set.

A. Robust H∞ Performance [25], [26]

The output e (t) and disturbance ω(t) ∈ L2 [0, tp ] of error
dynamic system (9) satisfy the following dissipation inequality:

∫ tp

0
eT (t) e (t) dt ≤ ρ

∫ tp

0
ωT (t) ω (t) dt + V (0) (10)

where ρ is a positive constant, V (t) is a positive semi-definite
function, and ω(t) will be specified later.

Remark 2: The robust H∞ performance means to attenuate
the influence coming from the disturbance input ω(t) to the

tracking error e(t) on a desired level. If the system energy func-
tion V (t) starts with zero initial value, i.e., V (0) = 0, then the
H∞ performance (10) can be rewritten as sup

ω∈L2 [0,tp ]

‖e(t)‖
‖ω (t)‖ ≤ ρ,

which implies that the gain between e(t) and ω(t) must be equal
or less than ρ. Thus, by satisfying the H∞ control performance
(10), it can guarantee the system output to be robust to exoge-
nous disturbances.

Because the nonlinear function f(z) is completely unknown,
it cannot be used to the controller design directly. In order to
obtain the available controller, RBFNN is employed to approx-
imate the unknown function in the following form:

f (z (t)) = W ∗T S (z (t)) + ε (z (t)) (11)

where W ∗ ∈ Rp×3 is the ideal weight matrix, of which p is the
neuron number, S (z (t)) ∈ Rp are the basis function vector,
ε ∈ R3 is the approximation error to satisfy ‖ε (t)‖ ≤ δ, where
δ is a positive constant.

The ideal NN weight W ∗ is unknown and is given only for
analysis purposes, so it needs to be estimated for controller
design. Let Ŵ ∈ Rp×3 denote the estimation of W ∗, then the
adaptive controller is constructed in the following:

τg (t) = −k1eη (t) − k2eν (t) − Ŵ T (t)S(z) + σ (d) (12)

where k1 , k2 are the positive design constants.
The adaptive law for the NN weight matrix is designed as

˙̂
W (t) = Γ

(
S(z)(eη (t) + 2eν (t))T − Ŵ (t)

)
(13)

where Γ ∈ Rp×p is the positive definite gain matrix.
Based on the controller τg (t) depicted in an earth-fixed frame,

the practical controller for the dynamic system (1) is obtained
as

τ(t) = MJ−1(η)τg (t). (14)

The main conclusion can be summarized by the following
theorem.

Theorem 1: Consider the AV dynamic modeled by (1) with
bounded initial condition, if the design parameters k1 and k2
satisfy the following conditions:

k1 ≥ k2

2
+ 3, k2 ≥ 8

3
(15)

then the proposed adaptive controller (14) can realize the con-
trol objective, i.e., all error signals are SGUUB and the distance
between AV and FPSO is maintained in safe range by the assis-
tance of artificial potentials, meanwhile, good system robustness
is guaranteed by satisfying the H∞ performance index (10).

Proof: Choose the Lyapunov function candidate as

V (t) =
(

k1 − 1
2

)
eT
η (t) eη (t) +

1
2
eT
ν (t) eν (t)

+
1
2

(eη (t) + eν (t))T (eη (t) + eν (t))

+
1
2
Tr

(
W̃ T (t)Γ−1W̃ (t)

)
(16)

where W̃ (t) = Ŵ (t) − W ∗.
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Taking the time derivative of V (t) along with (9) and (13),
the following result can be obtained:

V̇ (t) = (2k1 − 1) eT
η (t) ėη (t) + eT

ν (t) ėν (t) + (eη (t)

+ eν (t))T (ėη (t) + ėν (t)) + Tr
(
W̃ T (t)Γ−1 ˙̂

W (t)
)

= (2k1 − 1) eT
η (t)eν (t) + eT

ν (f(z) + Δg (t) + τg (t))

+ (eη (t) + eν (t))T (eν (t) + f(z) + Δg (t) + τg (t))

+ Tr
(
W̃ T (t)

(
S(z)(eη (t) + 2eν (t))T − Ŵ (t)

))
.

(17)

After several simple manipulations, (17) can be rewritten as

V̇ (t) = 2k1e
T
η (t)eν (t) + eT

ν (t)eν (t) + (eη (t) + 2eν (t))T

(f(z) + Δg (t) + τg (t))

+ Tr
(
W̃ T (t)

(
S(z) (eη (t) + 2eν (t))T − Ŵ (t)

))
.

(18)

By substituting (11) and (12) into (18), the following result is
obtained:

V̇ (t) = 2k1e
T
η (t)eν (t) + eT

ν (t)eν (t) + (eη (t) + 2eν (t))T

(
W ∗T S (z) + ε (z) + Δg (t) − k1eη (t) − k2eν (t)

−Ŵ T (t)S(z) + σ (d)
)

+ Tr
(
W̃ T (t)

(
S(z (t)) (eη (t)+2eν (t))T −Ŵ (t)

))

= − k1e
T
η (t)eη (t)−(2k2 − 1)eT

ν (t)eν (t)−k2e
T
η (t)eν (t)

− (eη (t) + 2eν (t))T W̃ T (t)S(z) + (eη (t) + 2eν (t))T

(σ(d) + Δg (t) + ε(z))

+ Tr
(
W̃ T (t)

(
S(z) (eη (t) + 2eν (t))T − Ŵ (t)

))
.

(19)

Using the property of trace operator that aT b = Tr(abT ) =
Tr(baT ), a, b ∈ Rn , the following can be obtained:

Tr
(
W̃ T (t)S(x)(eη (t) + 2eν (t))T

)

= (eη (t) + 2eν (t))T W̃ T (t)S(z). (20)

Substituting (20) into (19), the following result is obtained:

V̇ (t)=−k1e
T
η (t)eη (t) − (2k2 − 1)eT

ν (t)eν (t) − k2e
T
η (t)eν (t)

+ (eη (t) + 2eν (t))T (σ(d) + Δg (t) + ε(z)) − (eη (t)

+ 2eν (t))T W̃ T (t)S(z) + (eη + 2eν )T W̃ T (t)S(z)

− Tr
(
W̃ T (t)Ŵ (t)

)

= − k1e
T
η (t)eη (t) − (2k2 − 1)eT

ν (t)eν (t) − k2e
T
η (t)eν (t)

+ eT
η (t)σ(d) + 2eT

ν (t)σ(d) + (eη (t) + 2eν (t))T (Δg (t)

+ ε(z)) − Tr
(
W̃ T (t)Ŵ (t)

)
. (21)

Add and subtract k2
2 eT

η (t)eη (t) and k2
2 eT

ν (t)eν (t) to the right-
hand side of (21) to yield the following result:

V̇ (t) = −
(

k1 − k2

2

)
eT
η (t)eη (t) −

(
1
1
2
k2 − 1

)
eT
ν (t)eν (t)

− k2

2
eT
η (t)eη (t) − k2e

T
η (t)eν (t) − k2

2
eT
ν (t)eν (t)

+ eT
η (t)σ(d) + 2eT

ν σ(d) + (eη (t) + 2eν (t))T

(Δg (t) + ε(z)) − Tr
(
W̃ T (t)Ŵ (t)

)

= −
(

k1 − k2

2

)
eT
η (t)eη (t) −

(
1
1
2
k2 − 1

)
eT
ν (t)eν (t)

− k2

2
(eη (t) + eν (t))T (eη (t) + eν (t)) + eT

η (t)σ(d)

+ 2eT
ν (t)σ(d) + (eη (t) + 2eν (t))T (Δg (t) + ε(z))

− Tr
(
W̃ T (t)Ŵ (t)

)
. (22)

According to the Cauchy inequality, (
∑n

k=1 akbk )2 ≤∑n
k=1 a2

k

∑n
k=1 b2

k , and Young’s inequality, ab ≤ a2

2 + b2

2 , the
following facts hold:

eT
η (t)σ (d) ≤ eT

η (t)eη (t) +
1
4
σT (d) σ (d) , (23)

2eT
v (t)σ (d) ≤ eT

v (t)ev (t) + σT (d) σ (d) . (24)

(eη + 2eν )T Δg (t) ≤ eT
η eη + eT

ν eν + 1
1
4
ΔT

g (t)Δg (t), (25)

(eη + 2eν )T ε(z) ≤ eT
η eη + eT

ν eν + 1
1
4
εT (z)ε(z). (26)

Using (23)–(26), (22) can become the following one:

V̇ (t) ≤ −
(

k1 − k2

2
− 3

)
eT
η (t)eη (t) −

(
1
1
2
k2 − 4

)

eT
ν (t)eν (t) − k2

2
(eη (t) + eν (t))T (eη (t) + eν (t))

− Tr
(
W̃ T (t)Ŵ (t)

)
+ 1

1
4
σT (d)σ(d) + 1

1
4
ΔT

g (t)

Δg (t) + 1
1
4
εT (z)ε(z). (27)

Applying the fact Tr
(
W̃ T (t)Ŵ (t)

)
= 1

2 Tr
(
W̃ T (t)W̃ (t)

)
+

1
2 Tr

(
Ŵ T (t)Ŵ (t)

)
− 1

2 Tr
(
W ∗T W ∗) to the above inequality,
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the following is obtained:

V̇ (t) ≤ −
(

k1 − k2

2
− 3

)
eT
η (t)eη (t) −

(
1
1
2
k2 − 4

)

eT
ν (t)eν (t) − k2

2
(eη (t) + eν (t))T (eη (t) + eν (t))

− γ

2
Tr

(
W̃ T (t)Γ−1W̃ (t)

)
+ ωT (t)ω(t) (28)

where γ = λmax (Γ), ωT (t)ω(t) = 11
4 σT (d)σ(d) + 11

4 ΔT
g

(t)Δg (t) + 11
4 εT (z)ε(z) + 1

2 Tr
(
W ∗T W ∗).

Since AV and FPSO are connected by the gangway, the rel-
ative distance variable d(t) is limited in a neighborhood of the
equilibrium point. According to the definition of artificial poten-
tial, it can be concluded that σ (d) ∈ L2 [0, tp ], associated with
the facts that Δg (t) ∈ L2 [0, tp ] and ε(z) are bounded, the term
ωT (t)ω(t) can be bounded by a constant α, i.e., ‖ω(t)‖2 ≤ α.

Let β = min{ k1 − k 2
2 −3

k1 − 1
2

, 3k2 − 8, k2 , γ}, the inequality (28) can

become the following one:

V̇ (t) ≤ −βV (t) + α (29)

where β > 0 can be guaranteed when the design constants k1 ,
k2 satisfy (15). According to Lemma 1, the following inequality
can be obtained:

V (t) ≤ V (0) e−βt +
α

β

(
1 − e−βt

)
. (30)

The above inequality implies that all error states are SGUUB
and the position and velocity of AV can track FPSO states to
desired accuracy by choosing suitable design parameters.

In addition, from the inequality (28), there is the following
inequality:

V̇ (t) ≤ −
(

k1 − k2

2
− 3

)
eT
η (t)eη (t)

−
(

1
1
2
k2 − 4

)
eT
ν (t)eν (t) + ωT (t)ω(t). (31)

Let μ = min{k1 − k2
2 − 3, 11

2 k2 − 4}, the inequality (31) can
become the following one:

V̇ (t) ≤= −μeT (t)e(t) + ωT (t)ω(t). (32)

Integrating the inequality (32) from t = 0 to t = tp , the follow-
ing inequality can be obtained:

V (tp) − V (0) ≤ −μ

∫ tp

0
eT (t)e(t)dt +

∫ tp

0
ωT ωdt. (33)

Based on the fact V (tp) ≥ 0, the inequality (33) can become
the following one:

∫ tp

0
eT (t)e(t)dt ≤ ρ

∫ tp

0
ωT (t)ω(t)dt + V (0) (34)

where ρ = 1/μ.
Finally, H∞ performance is satisfied, which implies that the

proposed control approach can realize the control objective. �
Remark 3: Most existed research results for surface vessel

control are based on backstepping techniques, for example,

TABLE I
HYDRODYNAMIC PARAMETERS

Iz 1.7 Y |z |z − 2 N |y |z − 4.0
xg 0.04 Y |y |y − 36 N |z |z − 4
Xx − 0.72 Y |y |z 2 Xẋ − 2.0
X |x |x − 1.3 Y |z |y − 3 Yẏ − 10
Xx x x − 5.8 Ny 0.1 Yż − 0.0
Yy − 0.86 Nz − 6.0 Nẏ − 0.0
Yz 0.1 N |y |y 5.0 Nż − 1.0

[6], [27]. Since virtual controllers are required in backstepping
control, it is difficult to achieve the velocity consensus. Espe-
cially, for high-order system control, the technique even possibly
causes the problem of “explosion of complexity” by repeatedly
taking the derivative of virtual controllers. The proposed control
strategy skips the virtual controller design, hence it can achieve
both the position and velocity consensuses by integrating both
position and velocity error terms into the controller design.

IV. SIMULATION EXAMPLES

In order to further demonstrate the effectiveness of the pro-
posed synchronized tracking control, a simulation example is
carried out by a scale-down replica of AV. Its mass is m = 18 kg,
the length is 1.2 m, and the width is 0.3 m. All hydrodynamic
parameters of the model ship are shown in Table I. The inertia,
centrifugal and Coriolis, and damping matrices can be calcu-
lated as follows:

M =

⎡
⎣

20 0 0
0 19 0.72
0 0.72 2.7

⎤
⎦ ,Δ(t) =

⎡
⎣

η2
x (t) cos (1.5t)
η2

y (t) sin (t)
0

⎤
⎦ ,

C =

⎡
⎣

0 0 −19vy − 0.72vz

0 0 20vx

19vy + 0.72vz −20vx 0

⎤
⎦ ,

D =

⎡
⎣

0.72 + 1.3 |vx | + 5.8v2
x 0

0 0.86 + 36 |vy | + 3 |vz |
0 −0.1 − 5 |vy | + 3 |vz |

0
−0.1 − 2 |vy | + 2 |vz |

6 + 4 |vy | + 4 |vz |

⎤
⎦ .

For simplicity sake, the restoring force vector g (η (t)) is
assumed to be 0, i.e., g (η (t)) = 0, which can be found in a
large number of literatures, for example, [6], [27].

The initial values for the position and velocity states
are [13.5, 0, 0]T and [0, 0, 0]T , respectively. The desired
reference signals ηr (t) and η̇r (t) are given as ηr (t) =⎡
⎣

12 sin
(
0.2t + π

2

)
12 sin (0.2t)

arcsin (sin(0.2t)) + π
2

⎤
⎦ and η̇r (t)=

⎡
⎣
2.4 cos

(
0.2t + π

2

)
2.4 cos (0.2t)

0.2

⎤
⎦ .

The initial values for the position and velocity states of
reference signal are [12, 0, 0]T and [2, 0, 0]T .

The tracking error vectors are eη (t) = η(t) − ηr (t) −
c(t), eν (t) = ν(t) − η̇r (t) − ċ(t), respectively, where c(t) =
[d0 sin (0.2t) , d0 sin

(
0.2t + π

2

)
, 0]T is the desired relative
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Fig. 3. Attractive potential.

Fig. 4. Repulsive potential.

position variable between AV and FPSO, where d0 = 4 is the
length of the gangway.

Remark 4: It should be mentioned that the head state control
of AV is explicit because the trajectory of FPSO is a circle.
For simplicity, the control of this state is not specified and the
performance figure is not displayed.

In this example, RBFNN is chosen to approximate the un-
known function. The RBFNN is designed to contain 60 nodes,
i.e., p = 60. The centers, μi , evenly spaced in the range
of [−15, 15] × [−15, 15] × [−3, 3]︸ ︷︷ ︸

×2

[−3, 3] × [−3, 3] × [−3, 3]︸ ︷︷ ︸
×3

,

and the widths are φi = 2 for all. The initial conditions for
the weight matrix is W (0) = 03×60 , and the design constants
for adaptive law (13) are chosen as Γ = 4.

The attractive and repulsive potential functions are specified
as

Pa(d) = α‖eη (t)‖2

Pr (d) = βarccot
(
‖eη (t)‖2

)
(35)

Fig. 5. Total potential.

Fig. 6. Trajectories of AV and reference signal.

where α and β are positive design parameters, which are speci-
fied later. Figs. 3 and 4 show the attractive and repulsive poten-
tial, respectively. The total potential is shown in Fig. 5.

The corresponding attractive and repulsive forces are
expressed by the following equations:

σa(d(t)) = −∇Pa (d(t)) = −2αeη (t)

σr (d(t)) = −∇Pr (d(t)) =
2β

1 + ‖eη (t)‖4 eη (t). (36)

When α and β satisfy the condition that β = α, the equilib-
rium position between the attractive and repulsive forces can
be placed at d(t) = d0 = 4. Then, the design constants for the
controller (12) are chosen as k1 = 120, k2 = 80, α = β = 100.

The simulation results are displayed in Figs. 6–8. Fig. 6 shows
the position states of AV to track the trajectory of the desired
reference. Fig. 7 shows the movement trajectory of AV without
the assistance of artificial potentials, and the gangway cannot
be run smoothly in the absence of artificial potentials. Fig. 8
shows that the velocity of AV can follow to desired velocity by
the proposed control method.
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Fig. 7. Trajectories of AV without the assistance of artificial potential.

Fig. 8. Velocity vectors of AV and reference.

V. CONCLUSION

Based on the excellent approximation property of adaptive
NN, the proposed robust H∞ tracking control can be well ap-
plied to AV-FPSO systems. Artificial potential field method
was employed to assist AV to keep the desired distance with
FPSO. Since both position and velocity terms are integrated
into the adaptive vessel controller, the proposed control strat-
egy can guarantee that all error signals of the tracking control
are SGUUB and AV can synchronously track to FPSO. The
simulation example was carried out to further demonstrate the
effectiveness of the proposed approach.
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各学院（部），各部门,各单位：  

根据《博士生指导教师资格审定和聘任工作实施细则》《硕

士研究生指导教师资格审定和工作条例》《专业学位硕士研究生

指导教师资格审定和工作条例》等相关规定，学校于 2018 年 7

月组织开展了研究生导师增选和考核工作。经各学院学位评定分

委员会初审，学校组织专家复审，校学位评定委员会议决，9名

博士生导师、98名学术型硕士生导师、96 名专业型硕士生导师
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考核结果为合格；增选博士生导师 34 名、学术学位硕士生导师

157 名、专业学位硕士生导师 132 名。现将结果予以公布（见附

件）。 

如同一导师的考核合格专业和增选专业不同，以增选的专业

为准。研究生导师聘期为 2018年 1 月 1日至 2021 年 12月 31 

日，若届中达到退休年龄的，聘期至退休之日。 
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5.2018 年学术学位硕士生导师增选名单 

6.2018 年专业学位硕士生导师增选名单 
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