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Optimized Multi-Agent Formation Control Based on
an Identifier—Actor—Critic Reinforcement
Learning Algorithm

Guoxing Wen —, C. L. Philip Chen

Abstract—The paper proposes an optimized leader—follower for-
mation control for the multi-agent systems with unknown nonlin-
ear dynamics. Usually, optimal control is designed based on the
solution of the Hamilton-Jacobi-Bellman equation, but it is very
difficult to solve the equation because of the unknown dynamic
and inherent nonlinearity. Specifically, to multi-agent systems, it
will become more complicated owing to the state coupling prob-
lem in control design. In order to achieve the optimized control,
the reinforcement learning algorithm of the identifier—actor—critic
architecture is implemented based on fuzzy logic system (FLS) ap-
proximators. The identifier is designed for estimating the unknown
multi-agent dynamics; the actor and critic FLSs are constructed
for executing control behavior and evaluating control performance,
respectively. According to Lyapunov stability theory, it is proven
that the desired optimizing performance can be arrived. Finally,
a simulation example is carried out to further demonstrate the
effectiveness of the proposed control approach.

Index Terms—Fuzzy logic systems (FLSs), identifier—actor—critic
architecture, multi-agent formation, optimized formation control,
reinforcement learning (RL).
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1. INTRODUCTION

N THE multi-agent cooperation community, formation con-
Itrol is one of the most interesting and attractive research
topics because of its broad applications, such as cooperative con-
trol of unmanned aerial vehicles, satellite clusters, autonomous
underwater vehicles, and mobile sensor networks. In brief, for-
mation control is to design the appropriate protocol or algorithm
such that the multi-agent system arrives and maintains a prede-
fined geometrical shape, for example, a chain or wedge. In the
recent decades, formation control has been well developed, and
several published results receive the considerable and increasing
attention, such as leader—follower [1], behavior [2], virtual struc-
ture [3], and potential function based approaches [4], where the
leader—follower approach is the most popular one due to its sim-
plicity and scalability. The basic idea is that a leader is designed
as a reference for the agent group, and all agents as followers are
controlled to maintain the desired separation and relative bear-
ing with the leader. The main advantage is that group behavior
is specified by a single quantity (the leader’s motion).

Ever since optimal control, which means that cost function is
minimized, was formally developed about five decades ago by
Bellman [5] and Pontryagin [6], optimization became a funda-
mental design idea and principle in modern control theory. In
recent years, the optimal problem has been addressed in forma-
tion control of multi-agent systems, and several approaches have
been published [7]-[9]. In [7], the finite-time optimal formation
problem of multi-agent systems on the Lie group SE(3) is in-
vestigated. In [8], the finite time optimal formation is applied to
multivehicle systems. In [9], the centralized optimal multi-agent
coordination problem under tree formation constraints is stud-
ied. These published optimal formation methods are achieved
based on the solution of the Hamilton-Jacobi-Bellman (HJB) or
Hamiltonian equation. In practice, the HIB equation is solved
difficultly by analytical approaches owing to the inherent non-
linearities and unknown dynamics.

In order to overcome the difficulty coming from solving the
HJB equation, a reinforcement learning (RL)-based function
approximation strategy is usually considered. The basic idea is
that appropriate actions are taken by evaluating feedback from
environment [10]. One of the most popular means to perform
RL algorithms is the actor—critic architecture, where the actor
performs certain actions by interacting with environment and the
critic evaluates the actions and gives feedback to the actor [11].

1063-6706 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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However, most of the RL-based optimal approaches require
complete knowledge of system dynamics, and it is difficult to
be satisfied for practical situations. In order to release the strict
requirement, an effective solution is the identifier—actor—critic
method because the unknown dynamics are estimated by the
identifier for RL [12].

It is well known that fuzzy logical systems (FLSs) have excel-
lent approximation ability, which can approximate any contin-
uous function to the desired accuracy over a compact set. In the
recent years, many frequently used control techniques have been
well developed based on the FLS approximator, such as back-
stepping, optimizer, small-gain approach, and dead-zone con-
trol [13]-[16], and widely applied to various nonlinear systems,
such as [17]-[22]. However, a common challenge and difficulty
in adaptive fuzzy control is the stability proof because there pos-
sibly exists the undesirable drift in the online learning. Recently,
several stability analysis approaches are published to gain the
extensive attention [23]-[25], they are the effective ways for
solving the difficulty. Nevertheless, for multi-agent system con-
trol, stability analysis becomes more challenging and difficult
owing to the state coupling in the control design. To the opti-
mized formation control, stability analysis is turned into a very
complex and intractability problem because RL is performed by
online training both critic and actor simultaneously.

Motivated by the above-mentioned discussion, in this paper,
the RL algorithm of the identifier—actor—critic architecture is
utilized for the optimized formation control. Based on FLS ap-
proximations of the unknown nonlinear dynamic and optimal
value functions, the identifier, actor, and critic are constructed,
where the online learning for them is continuous and simulta-
neous. The main contributions are listed in the following.

1) The optimized formation control approach can efficiently
solve the tracking problem by segmenting an error term
from the optimal value function. Owing to the diffi-
culty in the convergence analysis of tracking errors, ex-
isting optimization control methods rarely involve the
tracking problem. The proposed optimization strategy
can well carry out tracking control; therefore, it can
guarantee that the leader—follower formation control is
fulfilled.

2) The RL of the identifier—actor—critic architecture is ap-
plied to multi-agent control so that the excellent control
performance can be guaranteed. Most of the existing RLs
are designed based on a common assumption that the
system dynamics are completely known, such as [26] and
[27]. However, this assumption is impractical or very strict
for many practical situations. The proposed RL algorithm
can release the strict assumption because the adaptive
identifier is employed to estimate the system uncertain-
ties, it can meet the practical requirements for real-world
engineering.

3) The strict proofs for the stability and convergence analyses
are given. In most of the existing RL control literature,
Lyapunov function for stability analysis is designed to
contain the infinite horizon value function, such as [12]
and [28]. Because the function’s derivative is negative, it
cannot guarantee that the strict analyses are performed for
stability and convergence.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 5, OCTOBER 2018

For convenience, the following notations are used throughout
the paper.

1) R represents the real number; R" denotes the
real n-dimensional vector space; R"™*™ is the
n X m-dimensional matrix space; and I, is the n X n
identity matrix.

2) || denotes the absolute value; ||-|| represents the 2-norm;
and () represents the set.

3) T is the transposition symbol; and ® denotes the
Kronecker product.

II. PRELIMINARIES
A. Fuzzy Logic Systems

It has been proven that FLSs have the universal approximation
and learning abilities. A FLS is composed of four parts, which
are the knowledge base, fuzzifier, fuzzy inference engine, and
defuzzifier.

The knowledge base is a collection of fuzzy If-Then rules
described in the following:

Rj: Ifxyis F{ and ay is FY ...

Thenyis G/, j=1,2,...,N

and z,, is FJ

where = = [21,...,7,]! is the input; y is the output; E’ and
G/ are the fuzzy sets associated with fuzzy membership func-
tions 11, (x;) € Rand g (y) € R, respectively; and N is the
number of rules.

The singleton fuzzifier, product inference engine, and center-
average defuzzifier are defined as

S (6 T (00)

y@) = ——7 (1)
£ (s @)
i—
where 6; = max/g; (y).
yER
Define the fuzzy basis function as
l:[lﬂF’_; (wl)
pj(x) = —— )

the FLS (1) can be re-expressed as

y(z) = 0" ¢(x) 3)

where © = [0y, ...,0x]" is viewed as the adjustable parame-
ter vector and ¢(z) = [¢1(x), ..., ¢ (z)]T is the fuzzy basis
function vector.

It has been proven that the FLS can uniformly approximate
any continuous nonlinear function to the desired accuracy over a
compact set. This property is described by the following lemma.

Lemma 1: [29] Any real continuous function h(z) € R is
well defined on a compact set €0, € R", there exists the FLS
described by (3) such that

sup [h(z) —y(z)| <e

zeQy,

where € > 0 is an arbtrary positive number.
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According to Lemma 1, for any continuous vector-valued
function f(x) = [fi(x),..., fm(2)]" € R™ defined on the
compact set {2y € R™, there exists an optimal parameter matrix
05 = 10] ,07%,,] € RV*™ such that

e
f(z) =07 o(x) + ¢4 (x) )

where e7(x) € R™ is the approximation error satisfying
llef(2)]] <9, 6 is a positive constant. The optimal parameter
vector O} is defined as

@” )

where ©; = [O1,...,0y,] € RV *™ is the adjustable param-
eter matrix. It should be mentioned that @} needs to be estimated
because it is an “artificial” quantity just for analysis purposes.

Of i=arg %mm{ing

B. Algebraic Graph Theory

The interconnection topology of a multi-agent system
can be depicted by a graph G = (Y,E, A), where T =
{v1,v9,...,0,}, ECT x T and A = [a;;] are the node set,
edge set, and adjacency matrix, respectively. Let &;; = (v;,v;)
denote the edge connecting both agents 7 and j, then §;; € Z if
and only if there is an information flow from agent j to agent
1. Agent j is called as a neighbor of agent ¢ if §;; € =, and the
neighbor set of agent 7 is denoted by A; = {v;|| (vi,v;) € =}.
The adjacency element a;; denotes the communication weight
corresponding to the edge &;;, which satisfies ;; € E < a;; =
1 and otherwise a;; = 0. A graph G is called undirected if
a;; = a;;. An undirected graph is called connected if any a pair
of distinct nodes can be connected by an undirected path. The
Laplacian matrix L = [l;;] C R"*" of the weight graph G is
defined as

L=D—-A (6)

where d = diag{d,,...,d,}, d; = Z?Zl aij.

Let b; denote the connection weight between agent ¢ and the
leader. If there is the information communication between agent
7 and the leader, then b; = 1, otherwise b; = 0. It is assumed that
at least one agent connects with the leader, i.e., by + by + - - - +
b, > 0.

C. Supporting Lemmas

Lemma 2: [30] An undirected graph G is connected if and
only if its Laplacian is irreducible.

Lemma 3: [30] Let Q = [g;;] € R"*" be an irreducible ma-
trix such that ¢;; = ¢;; < 0fori # jand g;; = — Y _, ¢;; for

i =1,2,...,n. Then all eigenvalues of the matrix
g1 +q qin
qn1 qnn + q”

are positive, where ¢, @, ..., G, are non-negative constants
Satisfying g + G + -+ + @, > 0.

Lemma 4: [30] Let ®(t) € R be a continuous positive func-
tion with bounded initial value ® (0). If ®(t) < —ad(t) +
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is held, where « and /3 are positive constants, then there is the
following result:
p

e P (0) + - (1 —

d(t) < e ). (7)

III. MAIN RESULTS
A. Problem Formulation

Consider the multi-agent system modeled in the following:

where z;(t) € R™ is the state; u; € R™ is the control input;
and f; (-) :R™ — R™ with f;(0) =0, is the unknown non-
linear continuous vector-value function. These terms f; (z;) +
u;, 1=1,2,...,n, are assumed Lipschitz continuous on
the set containing origin so that the solution of differential
equation (8) is unique for any bounded initial state x;(0). The
system (8) is assumed stabilizable, i.e., there exists the contin-
uous control u; such that the system is asymptotically stable.
The communication graph G is assumed to be an undirected
connected graph.

Let 24(t), 4(t) € R™ denote the desired trajectory and ve-
locity of the formation movement, which are assumed known
and bounded. Define the tracking error variable for agent ¢ as

Zi(t):xi(t)_md(t)_niv i:132a"'an 9

where 7; = [1;1, Mi2, - - - ,mm]T is the relative position vector
between agent ¢ and the leader, which depicts the predefined
formation pattern.

Definition 1: [31] The multi-agent system (8) is said to
achieve the desired formation if its solutions satisfy

tlim |z (t) — zq(t) i1=1,...,n

for the bounded initial conditions.
Based on (8), the following error dynamic can be yielded:

_772'” =0,

Define the formation errors as
)= aij (zi(t) —m — z;(t) + 1))
JEA;
+ b (xi(t) —zq(t) —m), i=1,...,n (11)

where a;; is the ith row and jth column element of adjacency
matrix A; and b; is the connection weight between agent 7 and
the leader. Inserting (9) into (11), the following equation can be

yielded:
=D ay (=
JEA;

D +biz, i=1,....n (12)

Based on the multi-agent dynamic (8), time derivative of the
formation error is

éi(t)zcifi(xi)"_ciuz bwd Za’Ux] t (13)
JEN;
where ¢; = Z]'EA; a;j + b;.
Define the infinite horizon value function as
=) u(e)) dr (14)
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where 7 (e,u) = el (t)e(t) +ul (C @ I,,))u = 2" (t)(iTi ®
I,)z(t) + vl (C @ I, )u is the cost function, where e’ (t) =
lef,....el]s u=[uf,... uT]T; z=[d,... ZT]T; C—

b n ) n b n
diag{ci,...,c, };and L = L + B. It should be mentioned that
L is a positive definite matrix in accordance with Lemma 3.

Let 7; (e;,u;) = el e; + ciul u; and Vi(e;) = [ (e;(

u;(e L))dT the value function (14) can be re- expressed as

€) = Zw(ei) - Z/:C ri(ei(7),ui(e;)) dr. (15)

Definition 2: [32] The multi-agent formation control
u;, ©=1,...,n, is said to be admissible associating with
(10) on a set €, which is denoted by u;_;...,, € ¥ (Q), if
u;, i=1,...,n,is continuous with u;(0) = 0, u; stabilizes
(10) and V (e) is finite.

The optimized formation problem for the multi-agent system
(8) is to find the admissible control policies v;, i=1,...,n
such that the infinite horizon value function (14) can be mini-
mized.

The control objective. Based on the RL algorithm of the
identifier—actor—critic architecture, design the optimized forma-
tion control u;, ¢ =1,...,n, for multi-agent system (8) such
that 1) all signals are semiglobally uniformly ultimately bounded
(SGUUB); and 2) the leader—follower formation control can be
achieved.

Based on the infinite horizon value function (14), the follow-
ing Hamiltonian function is derived:

H(e,u, %Z) =r(eu)+

=ele+ul (C® 1) u+2(6‘ge(e")ei(t))
- aVi(e) .

=3 (st + e oit® + 5 a0) - as)
i=1 i

AV (e)

where and d‘gé ) denote the gradient of V(e(t)) and
Vi (e;) corresponding to e(t ) and ¢; (t), respectively.

Letu* = [ujT,... u} ] be the optimal formation control,

then the optimal value function can be yielded as

uzzl,fr_lnnéll/(ﬂ)/t T(e,u) T [ T(@,u) T

ZV n

—Z/

where Vi*(e;) = ["r; (e;,uf)dr, @ C R™ is a compact set
containing origin.

Vi(e)

min)/ ri (ei,u;)dr

w; €W (Q

a7

613 7
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Integrating both (16) and (17), the HJB equation is yielded as

H (eu ‘98‘:) —r(eur) + gy

OeT
" 6V* €i) .
= Z@eilf + ¢ |lul]? + Z§>ei(t)) = 0.
i=1 Oe;
Associated with (13) and (18), the distributed HIB equation
can be derived as

oV 2%
1ﬂGu”a )—mn+aw+—8§><ﬁ@»

E , aiji;(t

JEN;

(18)

+oul —biag(t

19)

Obviously, if the distributed HIB equations (19) are held, the
HIJIB equation (18) is held. Assuming the solution of (19) is
existent and unique, the following optimal formation control v

can be obtained by solving 0H; (e;, u;, %‘:‘ )/Ou; = 0:
1 BV*(eZ) .
r= =1,... 20
ul 2 ael ) 1 ) b n ( )
Substituting (20) into (19) yields
oV
lle: (1)1 DeT cifi(wi) — biza(t ZGUSE]
jeEA;
G oV oV .
L = =1,...,n. 21
4 gel’ Oe; 0, ¢ A @D

In order to achieve the optimal formation control (20), the term
oV (ei) ;
E

is required, which is expected to obtain by solving (21).
However, due to the unknown dynamics and inherent nonlinear-
ities, the equation is impossible or very difficult to be solved.
Therefore, the RL algorithm of the identifier—actor—critic archi-
tecture can be considered to realize the control.

B. FLS Identifier Design

Since these dynamic functions f;(z;), i=1,...,n, of
multi-agent system (8) are unknown, the FLS-based identifiers
are established to estimate the unknown functions for achieving
the optimized formation scheme.

For x; € 2 where ¢ = 1,...,n, the function f;(z;) can be
approximated by the FLS in the following:

fi(zi) = O3 @i () +epi(wi),

where ©%; € RP'*™ is the optimal parameter matrix;
wpi (i) € Rpl is the fuzzy basis function vector; p; is the
fuzzy rule number; e7,(x;) € R™ is the approximation error
satisfying ||ef; (x;)|| < 0y;, and 0y; is a positive constant.

Since the optimal parameter matrix @’Ji is the unknown con-
stant matrix that cannot be applied directly, it needs to be esti-
mated. Let @TZ( ) denote the estimation, the adaptive identifier

i=1,....,n (22)
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is built as
i (t) = k7 (t) + é?z( )@ft (i) + us,

i=1,...,n (23)
where #;(t) € R™ is the identifier state, and Z;(t) = &; (t) —
x;(t) is the identification error.

Design the updating law for © ;;(¢) as
0i(t) = i (s (@)l (1) = 0.01:(1))
i=1,....n (24)

where I'; € RP'*P1 is the positive definite gain matrix and o; is
the positive design parameter.

Based on (8), (22), and (23), the identifier error dynamics can
be yielded as

() = —k; @i (t) + O7,(t)ogi (m:)
1=1,...,n
where O ;(t) = ©,(t) — ©7, is the estimation error.
Theorem 1: If the proposed identifier (23) with updating law
(24) is_used for identifying the multi-agent (8), then 1) the
errors © ;(t) and &, (t) are SGUUB; 2) the identification error
Z;(t) can arrive to the desired accuracy by making the design

parameters k;, i =1,...,n, large enough.
Proof: 1) Consider the Lyapunov candidate as following:

1 n ~ ~ 1 n B - ~
=5 ;wf(t) +3 ;Tr (@?iri 1ef,»). (26)

Taking the time derivative along (24) and (25) is

> #

- <€fz'(lEz')7
(25)

(—hidi(0) + OF (Desi () = 21:(2))

ST (B (D)l () + 0,05, (06 5:(0). @)
i1=1
According to the property of trace operator Tr(ba’ ) = a’'b

where a,b € R", there is the following fact:

T [6F,(Desi(a)al (0] = & (1) (6. (Deri (@) . 28)

Substituting (28) into (27), we obtain

- Z Ki || & (t)
i=1
— ZO’ Tr (@

According to the Cauchy—Bumakowsky—Schwarz inequality

331 (X ks akbk) (Zk 1 a;) (32— b7) and Young’s in-
equality [34] ab < % + ¢

— & (Hei(ar) <

Based on the fact that Tr(©},0;) = 1Tr(6F,6) +
%Tr(éTiéfi) -

}E:x

Efz x’L

HOyi(1)). 29)

%, there is the following result:

1
—||&f (30)

0 + 5%

%Tr(@}? ©7,), the following equation can be
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obtained:
— o Tr (6T (O, _%ire (BT (0O,
oiTr (O7,(10:(1)) < —5Tr (OF,(10:(1))
0 * *
+5Tr(®f? 5i) - 31)
Substituting (30) and (31) into (29) yields

. n 1 R n o

i=1 i=1

<=3 (s-

((:)3:7(:)1’1) + B

n

) 01 =3 5ty

% T (OF, (0T 16:(t)) +

where 3; = 1 371" 1(cqulr(@ 1)+ 5f1) and A (1) de-
notes the maximal eigenvalue of FZ !
Let o3 =min{2(k; f%),...,Q(k‘n f%),x ?r*‘)""’
max (T
} (32) can be rewritten as

(32)

}Mmax

E, (t) < —anEy(t) + .

According to Lemma 4, the following inequality can be ob-
tained:

(33)

By (t) <e “'E(0) +

Pe ( (34)
Qe

1-— e_‘“‘t)
it implies that the identiﬁer and estimation errors are SGUUB.
2)Let B, (t) = £ >0 | 27 (t)F;(t), its time derivative along
(25) is
EBo(t) < X (ki @11 + 37 OF 0 (@) — 3 epi) .35)
i=1

Inserting the following facts:

2

1
& (00T, (1eri(wi) < 3 IF I + 5 |67 Desie)||
1. 1
=&l esi(wi) < 5 1O + 503,
to (35) yields
Bot) <=3 (b~ DIE@IP +0.0)  G6)
i=1

where 1, () = § 0, (67, oy +6%,).
Since these estimation errors @?1 (t),...,0F (t) are

bounded, which are proven by part 1, the term v, (¢) is bounded.

Let s = mln {k —1} and By =sup{v.(t)}, (36)
i=1,..., t>0
becomes
E.’L‘ (t) S _OQEIw (t) + 52- (37)
Applying Lemma (4), we obtain the following equation:
B () < e 'B,(0)+ 2 (1), (38)

(65}

The above-mentioned inequality means that the identifier error
can arrive the desired accuracy by making «, large enough. O
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C. Optimized Formation Control Design

Since the multi-agent dynamic function f;(z;) is unknown,
the identifier (23) plays an essential role in the formation control
design. Define the identifier tracking and identifier formation
errors as

Zi(t) = i (t) — za(t) —mi,

() = > iy (#i(1)

JEA;

n—&; +n)+biz (). (39)

Based on the identifier dynamic (23), the following error dy-
namics can be yielded:

5(t) = —kidi (t) + OF, () ori () — da(t) +usy,  (40)
éi (t) = —kici.’fﬁi(t) =+ Cié% (t)(pfl‘ (Qil) + ciu; — bixy
— Z aij@i(t), i=1,...,n. 1)

JEA,;

Similar to (14)—(19), the optimal value function for the error
dynamic (41) is

V(e = /lL[ZI-?}relW(Q)/t r(e(r),u(é))dr
n n ~
NGO u,,?«}%z)/t i (6 (r), us(é1)) dr
=3 [Mniee e )
i=17t
where é(t) = [é] (t),él (t),...,éL (¢)]". Then the distributed

HIJB equation associated with (41) can be yielded as

N * a‘/l* ~ . 8‘/2* é .
Hi, <€iyuia 96, ) = ||el(t)||2 to ||ul ”2 aégl)Ei
Z i

oV (é; - .
= i1 + e P + % ( ~ kiesEi(6) + e
+ cié?i(t)cpﬁ (z;) Z a”:c] ) =0,
JEA;
1=1,...,n 43)

Assume the solution of (43) to be existent and unique. By
solving 0H; (é;,u, a V) /Ouf = 0, the optimal formation con-
trol w; can be obtained as

Lovi(e) .
= =1,...,n.
b 2 0¢ ! el
Segment the optimal value function (42) into two parts as

V(@) = v e @) + Ve (&), 45)

where ~; is a positive design constant, and V;°(é;) =

—i |lé: (1)||> 4 V;*(é;). Inserting (45) into (44), the optimal for-
mation control can become

(44)

1=1,....n

uf = —éilt) - 3

2 9¢; (46)

t=1,...,n.
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Since V;°(é;) is the continuous function, for é; € {2 where

i=1,...,n, V(é) can be approximated by FLS as
V) =0T (&) +ei(&), i=1,...,n (47
where OF € RP? is the optimal parameter matrix; ¢; (é;) €

RP? is the fuzzy basis function vector; py is the fuzzy rule
number; and €;(¢é;) € R is the approximation error to satisfy
lei (é;)] < &; where §; is a constant.

Based on the FLS approximation (47), the optimal value func-
tion (45) and optimal control (46) can be rewritten as

Vi) =y le@)I” + 67 ¢ (&) + (&), (48)
% R 1(9T i é; % 166; é;
R e A
i=1,...,n (49)
where W’Sé" ) and aié"’) are the gradients with respect to é;.

Substltuflng (48) and (49) into (43), we obtain the following
equation:

oV
Hi Aiv 777]
,(e u 8@_)

X Cié?ﬁ@ﬂ (LCZ) —

= —(e =Dl +2vel (1)

t) — bzxd — Z ai]"%j(t)

JEA;

kici @, (

@*T 8@! ( ) (CLGflSOfL (le) %Ciéi (t) - kiciaii, (t)

oer
¢i |07 i (é) . ?
—bizq(t Z a”xj “ a1l O;
jen; ¢
+e(t)=0 (50)
where
Oei(é; A .
€(t) = 5@5; ) (07 — kic; i (t) + ci(%?igofi(xi) — by
€
Oei(é;)
=Y i) + & [ & ‘ |
JEN; ¢

The term €;(t) is bounded because all terms are bounded.

Since the optimal parameter matrix O} is unknown, the op-
timal formation controller (49) cannot be applied directly. In
order to obtain the available control scheme, the following actor—
critic RL algorithm is constructed based on the FLS approxima-
tion (47), of which actor and critic FLSs are utilized to imple-
ment the control behavior and evaluate the control performance,
respectively:

V(&) = v lle @)l + 0% ()i (é) (51)
R 1 3Tg07‘, (él) ~ N
u; = —7;é;(t) — 587@-@(”@)’ t=1,...,n
(52)
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where V;*(&;) denotes the estimations of V;*(&;); and O, (t) €
RP? and é,“; (t) € RP? are the critic and actor parameter vectors,
respectively.

Using (51) and (52), the approximated HIB equation can be
obtained as

oV
H; (éi,uivaf;) = ”éi||2 +¢

# (2l + 0025 ) (0 (e -

T (5.1 . 2
10" ¢; (el)eag(t)

T e,

ki C; i‘z‘ (t)

¢i 0T i (&) 4 T
—iciéi — 5 —=——>0O,
Niciéi 2 0é;

t) — bixg — E a7jx] ,

jeA;
i=1,...,n. (53)

Define the Bellman residual error ¢;(t) as

ov; A
8éi> - H; <eiau7j7 %)

vy
= H; (éi,ui,f> , i=1,....,n.
36,;

Let ®;(t) = 3¢7(t), the critic updating law can be yielded based
on the gradient descent algorithm for minimizing the Bellman
residual error:

¢i(t) = H; <éi7ui7

(54)

boi(t) = -t O%(D)
TGO 060 (0)
:_’%i&(t)<rtéut — (Zei = D l& (O
1+ ||€z(t)||2 Ez () u() (’Yz G )Het( )H
+2v;é] Cié/{i(t)tpfi(:z:,) kicids — by Zaua:]
JEN;
" i (&) 4 ? o
1 Tieai(t) >7 i=1,...,n (55)

where r.; > 0 is the critic learning rate; and

Oy; (&)
oer

&i(t) = (Czéijl (t)pri(xi) — kiciTi — yicié;

i 9Ty (&)

2 ¢ ©ai(t)

71) l‘,]

E , amx]

jEA;

The actor weight updating law is designed as

A ) _lawi(éi)y ) 8@&( )8 @z(é)A )
@aZ(t) ) (3'ézr €; (ﬁ) RaiCi aAZT 96 @az(t)
KeiCi dpi (&) 9" i (&)

1(1tlam)) o %
:i(t)7i:17"'7n

X éai (t)sz (t)é(

where x,; > 0 is the actor learning rate.

(56)
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Assumption 1: [28] Persistence of excitation (PE): the signs
of & ()¢l (t), i=1,2,...,n, are required persistent excita-
tion over the interval [¢, ¢ + ¢;], i.e., there exist constants g; > 0,
¢ > 0,t; > 0 for all ¢ satisfying the following condition:

Silp, < &GE (1) < Gy, (57)

where I,, € RP?*P? is the identity matrix.

D. Stability Analysis

Theorem 2: Consider the multi-agent system (8) with
bounded initial conditions and reference signal. If the opti-
mized multi-agent formation control (52) is performed based
on the identifier—critic—actor RL algorithm, where the identifier,
actor, and critic are online trained by the adaptive laws (24),
(55), and (56), respectively, then by choosing appropriate de-
sign parameters, the optimized formation control can guarantee
that

1) all error signals are SGUUB; and

2) the leader—follower formation control can be achieved.

Proof: 1) Choose the Lyapunov function candidate as

B(t) = %z%)(i 36
1 n - -
+5 ; CHGEMG) (58)
where ©,;(t) = ©,(t) — ©*,0,;(t) = ©,;(t) — ©*. The time

derivative along (40), (55), and (56) is

Z

—~ AT 109 (&),  Opi(&) 0 wi (&) s
+§;®M’(t)<2 Der G TG T ge T g, O

( kiz;(t) + @%(t)wﬁ (i) — &a(t) + U7>

FeiCi dpi (&) 0" i (&) 2 T &
- —— 04 (1)&; (1)Oci(t)
1(1+la@)) o4 o
e (‘ Keilill) (e (16, — (e — 1) ]
#1600 (- (&7 00 = (e = D]
+2ve] (t) (e:OF; (V) psi (w:) — ki — bika — Y ayjt;

JEN;

2
> : (59)
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According to Young’s and Cauchy—Buniakowsky—Schwarz

i (&) 0" i (62)@(”@
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n
ReiCi

inequalities, there are the following facts:
T 2 kz ~ 2
—kie; ()2:(t) < ki ll&s @O + 1z @1,

2
Spfz

)

(00, (s (m:) < 3 Nes(o)I + 5 ]| 0% (o)

eI + 5 o). (60)

DO | =

— T (Wialt) <

Inserting the above-mentioned inequalities and control law (52)
into (59), we obtain

a

E'“)——Z( ki = 1) e +Z< L Palig

@T g (el)é — Kai GO (t)

oer oer

89@( )8 @L(é)A
0¢é; Oai (?)

KeiCi ;i (é;) 0T p; (61) ro
st 6. (1) Oui(1)
4 (1 + ||§7;||2) 9eT 06 )
) o) (- oty L0 (t) = (e — 1) ||é
#32600) (e (610u® e -1l

klcliz — bll'd — E aijﬁj)

JEN;

oy (@ﬂ()wz— (1) —
)+Z(—|| P+ 5 Nl
).

Based on the fact that O,;(t) = ©,;(t) —
lowing equations:

a Pi ( )
0é;

4
(61)

+5 [6h s ()

07, there are the fol-

st 28 e - et 0 2ole, - —r 26 Gy,
— Kai €Oy (t) asgégpéi) 8T§;§éi) O (t) = H(”c? —=OL(t)
6<;;éiTéi) aT(giéZ_(éi)éai(t) _ haiigr )8?%@1) aT(giéi(éi)
Oui(t) + 207" &g‘é(T &) o (e Jer.

Substituting the above-mentioned equations into (61) yields

. n X 1 A 6 (6 )
B <=3 (n—ki— 1) &)’ - 5 Z %@

i=1 i:

o Z RaiCi GT aSDz ez) a QO'L (ez)@m o Z RaiCi @T( )

oer 0é; —
P

9éT
oL ()

kei&i(t) A
*—” (fT O.i(t) —

2y (1 + ||fi||2)
+Z@

(v2er — 1) |l&]* + 2viel (¢)

0¢;

dpi (€:) 0" i (&) 4
T P ON

3

L+ [|&()°

é]Tfi(t)SDfi (i) — kic;@i — bjdq — Z aij:éj
JEA;
C; 8T(pl (éz) N 2
1| Tes O +Z (— @I + 5 leat)]?
1 5T . . 2 Halc? *T' 3802 (62) 8 ©i (62)
+2 @fi(t)<pfi($i) B ©; BE T ¢, o; .

[+

(62)

According to (50), the following equation can be obtained:

— (e =D lle +2vel @) (Ci@?z(t)wi (zi) = kici®i

. Ci ot O (€)
)= 3 o )smei o el

i (@) |
0¢; '

(63)

Poileg 4G —&(t).

0é; “ 4

Applying (63) and the fact that

T, (5 2
MQ:

0é; ©4)

L.r 3T<Pz‘ (€i) Ax A2
— P —@ < .
262 (t) f)él 1= ||62H

(62) can be rewritten as
Et < - k 2)1lé 2 - ﬂaiCiéT 5%‘(@:)
O <=Y (i—k =l - Y L=

i=1

8T(Pz‘ (&) ~ KaiCi i (€) o’ i (&)
0o (C)g, 3 e g 0o (e,

i=1

n . _ - (p: T (6.) A

n ReiCi 5 (_)Z“i (t 8322A(Te‘) 9 Sgi(eZ) @ai (t)
(14 e R

0+ Y600 (-

ot o -

Fei&i (t)
BRG]

Ci @*T i (€) o’ wi (€)

(GO

Z 0é; 6T 0é;
A AT GO ”
Ouilt) + 7 || =55 01| —« +Z i
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1At 2 Keic +2 |07 ¢ (&) ., ’
+ 505 0pntn| + g2 | 22 ey
1.
+3 ) 65)
Using the fact that
¢i || 07 i (&) P 09 (8) 0T i (&)
— || ai t - 5 Y - - ~ - ai t
ol es @) P e ~r 00 (€) 0T i (€;) 4
+7 a—éigi = Z@‘”(t) 9T 2c, O,i (1)

Ci .1 0P (é:) " vi (&) ~
6 3éT 0€; ©ai(t)

(66)

(65) can be rewritten as

n

B < -3 (v — k-2 e -3 RO

i=1 i=1

8902 ( ) or Pi (ez) ~ " Kei -
8@? 0¢; @ai(t) - ; m u( )gth ( )

& KeiCi ~ i (&) ar vi (&) T A
+ E @aTZ t N N ®az(t)£z 66i
Sa(i+ ||gi||2) ol 0¢

-3

ot et e e lblg

(:71 ~T 5. ai
= (1 +l&1?) o o
(e b (6:) -
Cikei ot (t)f o 6<PZA(€1) 0 ‘PZA(el) 0., (t)
Oc ©9eT 0¢é;
= (1 + N 1?) z :
6901 (é)
é‘l /L N
Z 1+ H&H Z 86?

5‘T i AZ A 2
Telbe, +Z(— IEOI + 5 || 005z
o

2
; ) : (67)

n o ) (e T o (6:) A
D B e e MUGEAD
a1+l o

-y

Sl el

KaiCi + 2 HBT% (é)

2 fldal +
o IITd 2 de,

Substituting the facts that

C’L K./CZ

A (&) 0" i (é1)
3 or sl e e,
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CiKei 6‘)01 (61) «T aT Wi (él) A
= (”‘ ®i 5; ~ @ai(t)7
12; 1 {1+ ) oer oe
Kei ~ Kei ~ ~
— 4 OL ()& () < ——2 0L (1)1 0, (t
g P Ot = g gy O (WaE Ot

Rei 2
+ —262- (t)
2(1+ [l&117)
into (67) yields

n

B#) < Y 00—k - D a1 - Y 06
i (€) or ©; (&)

oer o Z (1+||sl||)

n

1>

Sa(1+16)

CiKei

~ i (€;) " i (&) A
T *T ¢ .

. CiKei ~ i (&) 0T i (6) ~
+y 0L ()60 — 0, (t)
a1+ ||gi||2) oef 0

&Pz (€:) o’ Pi (el)
GéiT 0é;

Oui(t) + 1. (t) (68)

_Z”a?cz
where
" (ki L.
00 = 3 (150 + 5 1001

Kei

IR

1 2
&) +5 [OF:(er

e\ (187w, (6
+(1+ KaiCi H0 ¢i (6) g

2

Using Young’s and Cauchy—Buniakowsky—Schwarz inequal-
ities, we obtain the following results:

ReiCi

2 i (éi) @;ﬂT & (t)méai (t)
1(1+ l60I?)

ayl
@ai (t) 8éZT aéI

ot 2ol g yer (e Zele

8 ai (t)

_32

g Cz T 0pi (&) 0" pi (&) o
or(t) 9eT 9, Oui(t),

1(1+lswI?)
Cj AT o Opi () " i (é)

< OL ()& (1)e: A

a2 (1+ g WO e

K2Ci ar 0091 (&) 0T i (&) 5

st wser A T8 Bl

CHAGLR
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Inserting the above-mentioned facts into (68) yields

) n X n Ko Ci fiz/,‘ci
Bl <=2 (i -k - Dl - 1 (2 - 2

i=1 i=1
Ci ~«T T * dpi (&) 0T 807(é)*_
-0 60 (087) 810 =5 =5 - 0u)
Kei T dpi (1) 9" i (&) )
_ Dei S . o:
Z (1+1607) I\&II ( oer O

- a1t A a 1 1
O (1€ B z(“ o CIUE
i=1
" i (é o
Tz ai (8) + e (t). (69)

Make the design parameters to satisfy the following conditions:

i (6;) 0T i (&)

2 > k 2 ci > 7@*T ~
LR 9T o6,

— 16

*
G)i’

Kai > K +3 G @*T@* (70)

Based on the PE condition (see Assumption 1), (69) can be
written as

- . ~ " KaiCi /iz,[Ci
E) < -3 (i~ ki~ a0 Y (2 - Rl
=1 i=1
@Cl 070 ) AT (1)0,:(t) — Z Reisi  Msicr
1 al ar 1:1 2 32
0;70;) 0% (1)O.i(t) + 1. (t) (71)

where )»max and A" are the maximum and minimum eigen-

<>cw<>'

values of 2 5
€

2 .,

Lety = min {5~k — 2} m = min {(54e - 5
i=1,...,n i

_ Gic *T (@*) | min _

507 O))AM ), ke = i

§: Ci @*T @*}
and 5. = sup{¢.(t)}, (71) can be redescribed as
>0

)‘m ax

E t) < _'Yi: ||é1(t — Ra Zeat
i—1

—HCZ@

Furthermore, according to (80) (in Remark 1), the above-
mentioned inequality can be written as

—EQZ@

) + Be. (72)

2 (L@ In)

—/@Z@

where «,

t)+ 0 < —a.B(t)+ 6. (73)

— mi 27
= min{;=1-, 2k, 2k, }.
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According to Lemma 4, there is the fact that

—at ﬁe —at
e ““'E(0) + o (1—eh)
From the above-mentioned inequality, it can be concluded
that all error signals z; (), W, (t), Wy (t), i=1,...,n are
SGUUB.
2) Let E.(t) =337
along (40) is

() (L @ I,,)(t), its time derivative

V)

B.(t) =3 (=il (0F:(0) + e (6], 0oy (1)
i=1

—el (t)da(t) + & (t)u;) .

Performing the control (52) to the above-mentioned equation
yields

(74)

@fz Yori (i)

Z% e +Z(

CkieT ()i () — ~eT Voile)g (t) — el (D)ia ). (75)
' 2 0é; '

Applying (60) and the following inequality

1., 079 (&) . 2 i (&) A ?
- . < ||é: )

2ez (t) e, @m(t) = ||ez (t)H + e, ®al(t)
to (75) has

E.(t) < —v[[e)|* + - (1) (76)

where

’ 2

— 1 ¥ 2 ki 7. 2 .
5.0 = 3 (Gl + 10+ 5 O e o

)

From Theorem 1 and part 1, it can be concluded that all terms
of ¢, (t) are bounded. Therefore, there exists a constant 3, such
that v, (t) < (.. Furthermore, based on (80) (in Remark 1),
there is the following equation:

T STG)L @ I,)4(t) + B-

max

= _azEz (t) + ﬁz

" i (é)

0é; ai(?)

)

E.(t) < —

(77

where o, = f—”

According to Lemma 4, the following result can be obtained:

1- efo“t) .

The above-mentioned inequality implies that the tracking errors
can arrive at the desired accuracy by making «, large enough,
as a result, the desired control performance can be obtained. [J

Remark 1: Since Lisa positive definite matrix in accordance
with Lemma 2, it has n positive eigenvalues that are denoted
by A1,Aa,...,Ay. Let x1, X2, ..., Xn denote the eigenvectors
associated with these eigenvalues. According to matrix theory,
X1,X2s- - - Xn can be chosen to be a set of orthogonal bases. Let

B.(1) < e B(0) + 2 78)
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Q= [x1,X2,--->Xn] € B and P = diag{A1,A2,..., Ay},
there are the facts that QTQ=QQT =1, and L = QT PQ.
Then the term 27 (t)(L ® I,,,)2(t) can be reexpressed as

(L@ Ln)2(t) = 27 (8) (QT PQ) ® In) 2(t)

() (Q"PQQ"PT'QQT PQ) ® 1,,) £(t)
AL L) (QTP'Q) @ Iy) (L ® Ly)4(t)
) ((QTPIQ) @ L) &(1).

From the above-mentioned inequality, the following result can
be yielded:

(79)

Jonin [€@)]* < 27 (0)(L @ L) 2(E) < hmax [ E()]* (80)

where Ap,i, and Ay, .« denote the minimum and maximum eigen-
values of QT P71 Q.

IV. SIMULATION EXAMPLE

In order to further demonstrate the effectiveness of the pro-
posed formation methods, a numerical multi-agent formation
consisting of four agents is carried out. In this example, the four
agents move on the two-dimensional plane and the multi-agent
is molded by the following dynamic:

0.52;1 cos? (Bizi1)

Ti(t) = —ayxi(t) — Tip — sin’ (Bizio)

+uia

i=1,2,3,4 (81)

where Qj=1234 = 0.77 —3.].7 65, —11 and 61':1’21374 =
0.5,0.4,—5.5,—10, respectively. The initial positions
are Ti—123.4(0) = [6,6]",[-6,6]T,[6,—6]",[-6,—6]T,
respectively.

The desired reference signal is

24(t) = [2sin (0.7t), 2 cos (0.7¢)]" (82)

of which the initial state is x4(0) = [~1,1]". The formation
patternis n;—1 2 3.4 = [4;4]7, [—4;4]7, [4; —4]T, [—4; —4]".
The adjacency matrix is

O = O
o~ O
O = OO

The connection weight matrix between agents and leader is
B = diag{1,0,0,0}.

The identifier design: The fuzzy membership functions for
agent?, ¢ = 1,2,3,4, are chosen as

| | — [6,6]" + [25 — 1,25 — 1]7||”
i () = exp | — >

j=1,...,6. (83)

Then the fuzzy basis function vector is obtained as ¢, (z;) =
1 ) 6 ] j N — ‘M;‘j (i) .

[pyi(@i), ..., @p;(w:)], where <pfi(ml) S @) J

1,...,6. Based on (23), the adaptive identifier is built in
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— Agent 1
—— Agent 2
— Agent 3
20 —— Agent 4

Reference
trajectory

Time
)

Fig. 1.

Multi-agent formation performance.

the following by choosing the design parameters kj—1 234 =
24, 20, 18, 16; Fi:172’3~4 = 0.416; and 0i=1,234 = 0.6:

() = —ki®i () + OF, (s () + wi,
O5i(t) = 04 (—pri(x)aT (1) — 0605:(1)) (84

where

T
: 0.1 01 01 01 0.1 0.1
@fi(o)_[m 0.1 01 01 0.1 0.1}

The optimized formation control design: The fuzzy member-
ship functions for the distributed controller of agent 1,
1,2, 3,4, are chosen as

i:

. lles — [6,6]7 + 25 — 1,25 — 1]7 |
i, () = exp | — .

j=1,...,6. (85)

The fuzzy basis function vector is yielded as ¢;(e;) =
[l (). @l (en)], where ] (er) = el —.

! Sjoamt i (ei)
actor and critic adaptive laws (55) and (56), the design
parameters are chosen as k,; = 0.1 and k., =0.2, =
1,2,3,4; the initial values for adaptive adjusting vec-
tors are ©,;(0) = [0.1,0.1,0.1,0.1,0.1,0.1]" and ©,;(0) =
[0.2,0.2,0.2,0.2,0.2,0.2]7, i=1,2,3,4. The control pa-
rameters are chosen as ;1 2,34 = 26, 24, 22, 20, respectively.
According to (52), the controller is described in the following:

For the

U = — 1=1,2,3,4. (86)

Simulation results are shown in Figs. 1-6. Fig. 1 displays the
multi-agent formation performance. Fig. 2 shows the identifier
errors. The boundedness of identifier parameter matrices, critic,
and actor parameter vectors is displayed in Figs. 3—5. The cost
functions are shown in Fig. 6. The simulation results further
demonstrate that the proposed optimized formation scheme can
guarantee the control objective to be achieved.
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V. CONCLUSION

The paper proposes an optimized control scheme for leader—
follower formation of nonlinear multi-agent systems with un-
known dynamics. In order to achieve the control objective, the
identifier—actor—critic RL algorithm is employed based on the
universal approximation property of FLS, in which the identifier
is utilized to estimate the unknown dynamic of the multi-agent
system; the actor FLS is utilized to carry out the control be-
havior; and the critic FLS is utilized to evaluate the optimizing
performance and return the evaluation to the actor training. Ac-
cording to the Lyapunov stability theory, it is proven that the
proposed scheme can achieve the control objective. Simula-
tion results display the effectiveness of the proposed control
approach.
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Optimized Backstepping for Tracking
Control of Strict-Feedback Systems

Guoxing Wen™, Shuzhi Sam Ge, Fellow, IEEE, and Fangwen Tu

Abstract—In this paper, a control technique named optimized
backstepping is first proposed by implementing tracking control
for a class of strict-feedback systems, which considers optimiza-
tion as a design philosophy of the high-order system control.
The basic idea is that designing the actual and virtual controls
of backstepping is the optimized solutions of the corresponding
subsystems so that overall control of the high-order system is
optimized. In general, optimization control is designed based on
the solution of Hamilton—Jacobi-Bellman equation, but solving
the equation is very difficult due to the inherent nonlinearity
and intractability. In order to overcome the difficulty, the neural
network (NN)-based reinforcement learning strategy of actor—
critic architecture is used. In every backstepping step, the actor
and critic NNs are constructed for executing control behavior and
evaluating control performance, respectively. According to the
Lyapunov stability theorem, it is proven that the desired control
performance can be obtained. Finally, a simulation example
is carried out to further demonstrate the effectiveness of the
proposed control approach.

Index Terms— Actor—critic architecture, Lyapunov stability,
optimized backstepping (OB), strict-feedback system, tracking
control.

I. INTRODUCTION

FTER decades of research and development, backstep-
ping has become the most common and powerful control
strategy for strictly feedback and lower triangular systems, and
it also provides a systematic theory framework for the practical
engineering [1]-[4]. Its basic idea is to construct a recursive
control by considering many state variables as “virtual control”
and designing the control laws for them so that the goals of
stabilizing and tracking are achieved by an ordered control
sequence, and then, it is proven by performing the Lyapunov
stability analysis for the entire system.
In the past decade, many representative results concerning
backstepping control have been reported, such as [5]-[9].
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University,

In [5], a multilayer neural network (NN)-based adaptive
control for nonlinear strict-feedback systems is addressed by
using backstepping technique. In [6], an adaptive control
scheme for nonlinear strict-feedback systems is developed
by combining both dynamic surface and backstepping tech-
niques. In [7], backstepping technique is applied to consensus
tracking control of high-order nonlinear multiagent systems.
In [8] and [9], the cooperative control of high-order nonlinear
stochastic multiagent systems is investigated, and this is a
very challenging work, because the exogenous disturbances
depicted by Wiener process are considered. Finally, it is proven
that the control objective can be accomplished by applying
backstepping techniques. Although the backstepping technique
had been well developed and applied in control community,
unfortunately, all backstepping-based controls never address
the optimization problem so far. Motivated by the above-
mentioned considerations, a high-order system control tech-
nique named optimized backstepping (OB) is first proposed
by implementing tracking control for a class of strict-feedback
systems. Since the actual and virtual controls are designed
to be the optimized solutions of corresponding subsystems,
the overall control is optimized.

Ever since optimal control was formally developed about
five decades ago by Bellman [10] and Pontryagin [11],
optimization has become a fundamental principles and gained
increasing attention in modern control theory. Optimal control
means that the cost function is minimized by a control
protocol. In general, an optimal controller is designed based
on a gradient of the optimal value function, which is expected
to obtain by solving Hamilton—Jacobi-Bellman (HJIB)
equation [12], and becomes Riccati equation for the linear
system. However, HJB equation is solved difficultly by
analytical approaches owing to the inherent nonlinearity and
intractability.

In the last decades, reinforcement learning (RL)-based
function approximation strategy [13] has been successfully
applied to adaptive optimization control and becomes a pop-
ular approach to solve the complex control problem. In brief,
RL is that the appropriate actions are obtained by evaluating
the feedback from the environment. One of the well-known
and effective means is actor—critic architecture, where the actor
performs certain actions by interacting with environment; the
critic evaluates the actions and returns feedback to the actor so
that the performance of subsequent actions is improved [14].
Actor—critic RL as one of the most powerful and popular
online learning approaches has been widely applied to opti-
mization control, such as [15]-[17] for continuous systems
and [18] and [19] for discrete systems.

2162-237X © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Based on RL, approximate dynamic programming (ADP),
which was first developed by Werbos [20], was successfully
applied to adaptive optimization control by using optimal value
function approximation (typically NN-based approximation).
In recent years, iterative ADP optimal control methods are
well investigated by using actor—critic-based approximation
methods, and several excellent research results have attracted
considerable attention [21]-[23]. The research in [21] con-
cerns with developing an online approximate solution for
continuous-time nonlinear systems by actor—critic NNs, where
both actor and critic NNs are trained simultaneously. In [22],
an integral RL algorithm of the actor—critic structure is devel-
oped to solve HIB equation for partially unknown constrained-
input systems. In [23], the problem of system parameter
uncertainties has been tackled by using an iterative actor—critic
method.

These optimization schemes have attracted considerable
attention from different research fields and have been widely
applied in practical engineering. However, the optimization
control of high-order systems is still rarely addressed, espe-
cially for tracking control because of the difficulties coming
from controller design and performance analysis. Motivated
by the above-mentioned discussions, an optimizing control
technique of high-order systems is proposed by performing
tracking control. Applying the universal approximation ability
of NNs, both the actor and critic NNs are constructed to
carry out the RL algorithm, in which actor NN is trained
for obtaining excellent system stability performance and critic
NN is tuned based on minimizing Bellman error. The main
contributions are listed in the following.

1) The proposed OB control technique can achieve the
optimized control of high-order systems by melting opti-
mization into backstepping control. The basic idea is that
every controller is designed to be the optimized solution
of corresponding subsystem, and therefore, the overall
system control is optimized.

2) The proposed optimized approach can efficiently solve
tracking control problem by segmenting an error term
from the optimal value function. Owing to the difficulty
coming from the convergence analysis of tracking errors,
existing optimization control methods rarely involve
the tracking problem. By both theory proof and com-
puter simulation, it is demonstrated that the control
scheme can steer the system output to follow the desired
trajectory.

3) Online RL is applied to backstepping control. By eval-
uating the feedback from environment and returning
the evaluation to facilitate the control, excellent control
performance can be guaranteed.

II. PRELIMINARIES

A. Background on Optimal Control

Consider the nonlinear continuous-time dynamic system
modeled in the following:

x(1) = f(x) + g(x)u(x) e))

where x(¢) € R" is the state vector, u(x) € R™ is the control
input, and f(x) € R" with f(0,) =0, and g(x) € R"*™ are
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the vector-valued and matrix-valued functions, respectively.
The term f(x) + g(x)u(x) is assumed Lipschitz continuous
on the set € containing origin so that the solution of (1) is
unique for bounded initial state x(0) and control input u(x).
The system (1) is required stabilizable on Q, i.e., there exists
the continuous control function u(x) such that the system is
asymptotically stable.

The infinite horizon value function for the dynamic
system (1) is defined as

Vi) = / F(x(s), u())ds @)

where r(x (1), u(x)) = h(x) +u’ Pu is the immediate or local
cost function, of which /(x) is a positive definite function and
h(x) =0 if and only if x(r) =0, and P € R™ ™ is a positive
definite matrix.

Definition 1  [24]: A control policy u(x) is defined as
admissible with respect to (1) on Q, which is denoted by
u(x) € ¥Y(Q), if u(x) is continuous on Q with u(0) = 0,
u(x) stabilizes (1) on Q, and V (x) is finite.

The optimal control problem for system (1) is to find a
control policy u(x) € W(Q), such that the infinite horizon
value function (2) is minimized.

Define the Hamiltonian function corresponding to (1)
and (2) as

H(x,u,Vy) =r(x,u)+ VXT(x)ic(t)
=h(x)+ uT(x)Pu(x) + VXT(x)
x (f(x) + g(x)u(x))
where Vi (x) = 0V (x)/dx, i.e., the gradient of function V (x)

with respect to x(¢).
The optimal value function is defined as

V*¥(x) = Mén\yi(r;)) (/t r(x(s), u(x))ds)
= /Oor(x(s), u*(x))ds

where u*(x) is the optimal controller. Then, there is the
following HIB equation:
H (x, u*, V;)
= r(x, u®) + VT (x)i(r)
= h(x) +u*! Pu* + VI (@)(f() + g)u) =0 (3)
where V(x) = dV*(x)/ox, i.e., the gradient of V*(x) with

respect to x.

Assuming the solution of (3) existent and unique,

the optimal control u* can be obtained by solving
OH (x,u*, Vi)/ou™ =0 as
1

u*(x) = =5 Pl (Vi (). @

Substituting (4) into (3), the following result can be
obtained:

H(x,u*, VE) = h(x) + VT f(x)

VT @E@P T @V =0, )
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The gradient term V*(x) is expected to obtain by solv-
ing (5), and then, the optimal control can be got by substituting
the solution into (4). However, it is very difficult or impossible
to solve the HIB equation (5) owing to the inherent nonlinear-
ity and intricacy. In order to overcome the difficulty of solving
HIB equation, the adaptive approximation strategy using RL of
actor—critic architecture is usually considered [25].

B. Neural Networks and Function Approximation

It has been proven that NNs have excellent function approx-
imation and adaptive learning abilities. Any continuous non-
linear function ¢(z) : R — R™ defined on a compact set Q,
can be approximated by NNs in the following form:

oy (@) = WTS() ©)
where W € RP*™ is the weight matrix and p is the neuron
number; S(z) = [sl(z),...,s,,(z)]T is the basis function

vector, s;(z) = expl—(z — )T (z — wi)/p7). z € Q. C R",
is the input vector, ¢; is the width of Gaussian function, and
i = [,uil,...,,um]T, wij is the center of receptive field,
i=.L2,...,p,j=12,...,n.

Based on the NN approximation (6), the function ¢(z) can
be redescribed in the following form:

9(2) = WTS(z) +e(2) (7)

where ¢(z) € R™ is the approximation error, which is
bounded by a positive constant d, i.e., |[e(z)] < &; W*
RP>™ is the ideal weight, which is defined as W*
argminy e gpxm{sup,cq_llo(z) — WS(2)|}. It should be men-
tioned that the ideal NN weight W* is an “artificial” quantity
only for analysis purpose.

It has been demonstrated that the approximation error
lle(2)|| can be reduced to arbitrarily small if the neuron number
p is chosen large enough [26].

[>m

III. MAIN RESULT
A. Problem Description

Consider the following single-input single-output nonlinear
strict-feedback system:

1) = fi(x1(r)) + x2(7)
xX2(t) = fa(x2(2)) + x3(1)

-"Cn(t) = fn(-)zn(t))'i'u (8)

where x| € R is the system output, # € R is the control input,
xXi(@®) =[x1(t), ..., xi (t)]T € R' is the state vector, fi(xi) €R
with f;(0;) = 0 is the continuous function, which is assumed
known and bounded, and f; (x;)+x;4+1(t),i = 1,...,n—1, and
Jn(Xn) + u are assumed Lipschitz continuous and stabilizable
on the sets containing origin.

Definition 2 (Semi-Globally Uniformly Ultimately Boun-
ded [27]): Consider the nonlinear system

x() = f(x,1)

where x(¢) € R" is the state vector. Its solution is said to be
semi-globally uniformly ultimately bounded (SGUUB) if, for
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x(0) € Q, where Q, € R" is a compact set, there exist two
constants ¢ and T (o, x(0)), such that ||x(¢)|| < ¢ is held for
all r > 19 + T (o, x(0)).

Lemma 1 [28]: Let G(t) € R be a continuous positive
function with bounded initial value G (0). If G(t) < —aG()+
c is held, where a and c are two positive constants, then there
is the following one:

G(t) < e'G(0) + 2(1 — ey,

The control objective is to design the NN approximation-
based optimized control for the strict-feedback system (8),
such that: 1) all error signals of the tracking control are
SGUUB and 2) the system output xj(¢) can track the ref-
erence signal y,.(f) to the desired accuracy, where y,(¢) is a
sufficiently smooth function and y, (t), y,(¢), - - , y*~!(¢) are
bounded.

B. Optimized Backstepping Design

In this section, optimizing is integrated into the n-step
backstepping for the tracking control of the strict-feedback
system (8). Different with traditional backstepping, the pro-
posed OB control designs all virtual controls and the actual
control to be the optimized solutions of corresponding subsys-
tems, therefore the overall system control can be optimized.
In every backstepping step, the actor—critic RL algorithm is
implemented by constructing both actor and critic NNs, where
the actor NN is utilized to perform the control policy and the
critic NN is utilized to evaluate the optimization performance.

Step 1: Define the tracking error variable for the
backstepping step as z1(¢) = x1(¢) — y,(¢). Its time derivative
along (8) is

21(1) = fi(&1 (@) 4+ x2(t) — ¥, (1) (C))

where x(¢) is called the intermediate controller.

Viewing x3(f) as the optimal virtual control a]“(zl), ie.,
x2(1) & af(z1), the optimal value function for zi-subsystem
(9) is defined as

Vi‘(z1) = mergi(rglzq) (/t rl(zl(s),m(m))ds)

= / ri(z1(s), af (z1))ds 10)

where ri(z1,01) = z%(t) + a%(m) is the cost function,
ai(zy) is the virtual controller, and €., is a compact set con-
taining origin. The optimal value function can be decomposed
into the following two terms:

Vi) = piz3() — frz3() + Vi(z1)
= p1z3(0) + V(1) (11)

where f is the positive design constant and V{’(z1) € R is a
continuous scalar-value function.

Remark 1: The decomposed term ﬁlz%(t)of (11), which
will be made in every step later, aims to achieve the tracking
control for the subsystem. Although most existing optimization
control methods, such as [15]-[17], can guarantee state bound-
edness and system stability, few research results address track-
ing control problems. In the design, by segmenting the error



WEN et al.: OB FOR TRACKING CONTROL OF STRICT-FEEDBACK SYSTEMS

term ,b’m%(t) from the optimal value function and choosing
the appropriate parameter f1, the desired tracking performance
can be achieved. The method can also be easily extended to
multidimensional systems by changing the term ﬁlz%(t) to
norm expression.

Based on the error dynamic (9), HJB equation of the
z1-subsystem is

oV
H, (z1,ai‘,a—zi)

oV
=ri(z1,0f) + —2 (1)

071

z(1)

=22+ o*(z1) + (2ﬁ121(t) + ovi (Zl))

071

x(f1(&1) +af(z1) — v, (1)) = 0. 12)
By solving 0H}/daj = 0, the optimal control a] is
10V?(z1)
af(z1) = —przi(t) — = — . (13)
2 0

Since the term 6V (z1)/0z; is continuous on the compact
set ;,, it can be approximated by NN as
oV (z1)
0z1
where Wf‘ € R™ is the ideal weight, Si(z;) € R™! is the
basis function vector, and ¢;(z;) € R is the approximation
error, which is bounded by a constant dy, i.e., |e1(z1)| < J1.
Using (14), the gradient term 8V;*(z1)/dz; and the optimal
controller o (z1) become
oVi(z1)
0z1

1
ai(z1) = —frzit) — 5(W1*Tsl(z1> +e1(z1)). (16)

Substituting (14) and (16) into (12), the following equation
can be obtained:

= WiTS1(z1) + e1(z1) (14)

= 2B121(t) + Wi S1(z1) + e1(z1)

15)

H(z1,af, WY)
= —(B7 = 1)) + 25121 () (f1(F1) — 3,(1))
+ Wi S1 ) (1 (E1(0) = 3,(0) = Brzi (1))

W SIS @OWE e =0
where €1() = e1(z0)(fi(X1) — 3 (1) + af) + (1/4)e1(21) is
bounded, because all its terms are bounded.

Since the ideal weight W} is an unknown constant vector,
the optimal virtual control (16) cannot be applied directly.
In order to obtain the available control, the actor—critic
RL algorithm is constructed, where the critic and actor
NNs are given in the following:

a7)

ovy ovy
—L = 28151
0z1 Araa) + 0z1

i1 =~z - S WHOSiE)

=28121(1) + WH®)S1(z1)  (18)
(19)
where ‘71*(11) and \71" (z1) are the estimations of V|*(z1) and

V{ (z1), respectively; WCTI (1) € R™ and WaTl (t) € R™! are the
critic and actor NN weights, respectively.
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By substituting (18) and (19) into (12), the approximated
HIJB equation can be obtained in the following:

Hi(z1, a1, Wer)

2
=22() + (—ﬂlzl(l) — %WaTlSl(Zl))
+(2B121() + WL S1(21)) (—ﬂm(t) — %val (1)S1(z1)

+f1(x1) — y'r(t)) - (0)

Using the HJB equation (17) and its approximation (20),
Bellman residual error e () is yielded as

e1(t) = Hi(z1, &1, Wer) — Hi(z1, o}, Wi)

= Hi(z1, 61, Wer). @D
Define a positive definite function of the error e (z) as
1
Ei(t) = 5ei (). (22)

In order to minimize the Bellman error (21), the following
critic NN updating law is obtained by using the gradient
descent algorithm:

_ Vel OE (¢ )
lor@I2+1 aW,,
Vel

— )
lor P+ 1

x (w?(r)vifcl(t) — (BT = 1)z1(1) +2B1z1

Wer () =

1 4 “
x (fi(x1) — yr) + walsl (ZI)S{(ZI)Wal)
(23)

where y.; > 0 is the legrning rate and wi(t) = Si(z1)
(f1G) = frzi(0) = /DWW (0)S1(z1) — ) € R™.

Based on the system stability analysis, the actor NN weight
updating law is designed as follows:

War () = 5510210 ~ 10151 ST ) Wan ()

4l |? + 1)51(11)51 @) Wa1 (ol ()Wer (1)
(24)

where y,1 > 0 is the learning rate.

For obtaining the desired control performance, the following
assumption is required.

Assumption 1 (Persistence of Excitation [21]): The signs of
w; (t)a)l.T (), i =1,2,...,n, satisfy the following persistence
of excitation (PE) condition over the interval [¢, ¢ + 7;] with
all ¢ values:

Niln, < 0i(O)o] () < Ciln, (25)

where 7; > 0, ¢; > 0,7; > 0, and I, € R™ ™ is the identity
matrix.

Defining the error variable z5(t) = x2(t) — a1(z1), the error
dynamic (9) can be rewritten as

21(0) = filx1) + 22(t) + a1 (z1) — y-(2). (26)
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Consider the following Lyapunov function candidate for the At(”j)ﬁ WaTl (1)S1 (zl)SlT (z1)Wa (t)a)lT W1 (1)
z1-subsystem: w1 )
! ! RO A
Li0) = 380+ 3WEOWar () + 3 WEOWer 0 .

] A ] « (wlTWd(t) — (B2 = )20 + 2820 (iE) — 3)
where Wi (1) = Wi () — W) and Wal(t) = Wi (1) — Wy are

the critic and actor NN estimation errors. 1 or T r - .
+-W_,S1(z1)S; (z1)W, +z1(2 x1) —z1@®)yr.
The time derivative of L{(¢) along (23), (24), and (26) is 4 al 1@)S; G al) 10 /1) 1@
(29)

Li) =210 (fi@) +2200) +a1(21) = 3r(0)) + Wi, (0)
According to Young’s inequality ab < (a?/2) + (b*/2),

X (%51 (z0)z1(t) = ya1S1(z1) ST (21) War (1) there are the following results:
Vel T ; T i 21(0z22(t) < 23() + 23(0)
> S1(21) S} @) War()oy (1) We (t))
4l P41y R el : 2@ fi(E) < lz%(,) + lff(jl)
_ et wrh 1w
2 cl 1 .
o lI* +1 —z1(0)yr (1) < —Z1(t) + yr 2(1)
TR 2 2
X (a)l Wei (t) - (IBI - l)zl(t) _%Zl(l‘)W{kTSI (Zl) < Zl(t) + 5(VVI*TSl (Zl))z-
+2B1z21(0)(f1(51) — v (2)) + %WQTI (®)S1(z1) Adding the above-mentioned inequalities to (29) has
; 2 Val wT
x SlT(Zl)Wal(t))- (27) Ll(t) = ZZ(t) - (ﬁl - S)Z (t) - al(t)Sl(Zl)
, . , xST () War (1) — == almsl @)S] @) War (0)
Executing the optimized controller (19) to (27) yields Vel 2 A )
+WWa1U)Sl (@) 8] (21) Wai () oo] Wer (2)
Li() = 21(0220) — 123 () — —m(t)w (1)S1(z1) vl Vo
- i Tar 1O
~|—§Wa1(f)51 @021 = 7at Wi ()81 ST (21) War (1) o+
- ) ) x (wl Wt (1) — (87 = 1)) + 2121 (1 (1) — 50)
mmﬂ (0)S1@)ST (@) War (o] Wer (1) |
Yl o7 +—Wﬁ(r>sl (@DSf (m)%(r))
- — Wl (") 4
||C()1 “ +1 + = ( + + Yal +1 (W*TS ( )2 (30)
< (o W - (8 - sk SR 5 e
Considermg the followmg equation derived from (17):
+ 2/ (f1(x1) — yr)+ W2 (081208 1) — (7 = Dzt + 28121 (f1(E1) = 3r)
1 4
x Wal(t)) +21(0) f1(F1) — 210 (28) = ol W = SWiO8$1@)S] @)W}
1 * *
Based on the fact W1 (t) = Wai(t) — W}, there are the +ZW1T51 (@)S{ @)W =) S
following equations: (30) can become
Wﬂm&&om—mwlm&m) Lﬂﬂ<@0%{m—$qm—ZﬂW (1)S1(z1)

= —210OWiT S1(z1),

T = Val -
par W Tl(l)Sl(Zl)SlT(Zl)Wal(l) xS87 (z1)Wa1(t) — N W (0)S1(z1)ST (21) War (1)

Vel = 2 A
y;l L0)S1(z1)ST (1) Wa1 (1) +2a Wi (0)S1(z1) +W|2_|_1)W11Tl (1)S11)S (1) War (1) o] Wer (1)
T 2 _ Yal ouT _ Vel wT (t ,
x Sy (z1)Wai (1) il 51(Z1)51 (z)Wy. To O+ 1 (D7)
. . . . - J A
Inserting the above-mentioned results into (28) yields « (w1T () Wer (£) — EWaTl (1)S1(z1) SlT )W
Li(t) 1
1 +—W1*T51(ZI)SIT(21)W1*
= =Pz (1) + 21()z2(1) — —Z1(I)W1*T51(Z1) 4

1 A A
3 MW (01 )ST @) Wt (1) — M W (1) +ZWfl(t)Sl(z1)51T(z1)Wa1(l) - 61(l))

2
I 5 1, Ya1l + 1
x S1E0S] @) War () + SWiTs) (11)51 )Wy +3 FEG) + 5370 + ==

(WiT S1(z1)>. (32)
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Inserting the facts that

1.
——WI

WE@SIEOST @OW + WS s] oW

+ A%WQTI(I)& (z1)ST (1) War (1)

_ %WGTI(I)Sl(Zl)S{(ZI)WaI(t)

l ~
—ZW{kTSl(m)SlT(Zl)Wal(f),
Vel

T
mwcl(t)wl(t)fl(l)
= WM Wh o (o] ()Wer (1)
Yl 2
AR (33)
into (32), there is the following one:
Li(t) < —(B1 =323 (1) + 25(t) — %Waﬂ(t)& @)
Tz w Tl W
xS (21)Wa1 (1) o EED WL (ool W (1)
+4(||wly|ﬁwf1(l)51(m)5{(zl)vf/al(t)wlT Wer (£)
_Mﬁwﬂ(om WL (1)S1z1)ST (1) Wa1 (1)
ﬁﬁ/{](l)wlersl(zl)S{(Zl)Wal(t)
_%W 1(OS1 @) ST @) War (0) + 5 f1 (%1) + yr
a 1 .
+ 12+ (W7 $1G0)” + St 0. (34)

Substituting the following fact:

mwﬁ (1)S1(21)ST @) War ()] Wer (1)
v
4l + 1)
= mw,ﬂ (I)Sl(m)Wch
. Vel
4l + 1)
Vel

= — WO @)W o1 ST 1) Wai (¢
Ko E D Y OSi@Wiensy @) Wa ()

into inequality (34) yields

W (w1 W2 (0)S1 () ST (21) War (1)
()1 ST (21) Wa1 (1)

W (0)S1 )W) ()1 ST (21) War (1)

Li(0) = =81 = 32H0) + 30 - LW

)’cl
2(Jloor 1? + 1)
W1 (0)S1(z1)WiT 1 ST (21) War (1)

Wl(0)81(z1)

x S (z1)War (1) — W/ (oro] Wei (1)

Vel
A1 2+ 1)

Vel
M)
—%W 0)S1z)ST @) War () + ~ fl @) + - 557

yal"‘l
7

W o WiT s (zl)S{ (1) Wa1 (1)

_I_

Wil S1 (1)) + 7el(t). (35)
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According to Young’s inequality and Cauchy inequality,
there are the following results:

Vel ~ T T , .
mwal 0)S1 @)W w1 (1)S] (21)Wai (1)

1 - -
< 3—W51(r)sl(m>wrfw1w{wrs{ (21)Wa1 (1)

ycl

+ LW 081 @OST @ War (),

meg O OWT$1@)ST @) War ()

1
32(||001||2 +1)
Wei (t)

Applying the above-mentioned inequalities to (35) has

Li(t) < 23(1) — (b1 — 323 (1)

2
. 1
_ (_V;l - _751 -5 Wil wjef W{")

x W () S1(z2)ST (21) Wa1 (1)

1 Vel 1
—m (% - 3—2W Sl(Zl)SlT(Zl)Wl*)

2
- ~ 1Y 2
x W (Hor0] Wei(t) — (% - %) W1 (1)

y; W (6)81(z1)ST (z1) War (1) +

WL o1 Wi S1(2)ST (21)Wie]

n 1 _ 1.
xS1(z1)ST (z1) Wa1 (1) + —ff(xl) + —y%(r)
Yal “rl

+ 2

(WiTS1(z))” + —élz(t) (36)

Rewrite (36) to compact form as

Li(t) < =ET(0)A1(0)E () + Ci () + 23(0)

2
- (% - %) Wi ()81 D) @) War (1) B7)
where & (¢), A1(¢), and C; are shown at the top of the next
page.

Because the PE condition is held (Assumption 1), the diago-
nal matrix A;(¢) can be made positive definite by designing the
parameters S, y¢1, and y,; to satisfy the following conditions:

4 LT
16

1
per > —sup{imax{WiT S (1) ST c)Wi}).
16 IZO

ﬂl > 3’ Yal > ycl + —

(38)

Remark 2 Tt should be mentioned that the unknown con-
stant matrix W} is only for analysis purpose. The condi-
tion (38) implies that the matrix A;(¢) can be made positive
definition.

Then, (37) can become the following one:

Li(t) < —at|& O + e + 23(0)

where a; = inf>o{Amin{A1(1)}}, c1 = sup,5o{C1(1)}.

Step i (i = 2,...,n—1): Define the tracking error variable
for the ith step as z;(t) = x;(t) — @;_1(zi—1). Based on the
system dynamic (8), the error dynamic for z;-subsystem is

5i(t) = fi(®%) + xiv1 (1) — Gi1 (ziz1). (39)
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0

0
L (L st w) e ()
lorO2+1\ 2 32 ! ! !

a0 = [210, Whe, whon]”
Bi1—3 0
2
: 1
AL(t) = 0 (%—%—ﬁwfwlwfwl*) Si1(z1)ST (z1)
0 0
I 5 _ I., Va1 +1 «T )’cl &2
Ci = Efl (x1) + 3 )+ 7 (W 51(21)) + € ()

Viewing x;41(¢) as the optimal virtual control input a(z;),
the optimal value function for z;-subsystem is defined as

aiegi(gq) (/too ri(zi(s), ai(Zi))dS)
_ / ri(zi(o), @ (z))ds

where r; (z;, a;) = z%(t) +ai2(z,-) is the cost function, «; is the
virtual controller, and €, is a compact set containing origin.
The optimal value function V;*(z;) is reexpressed as

Vi (zi) = fizi (1) + V{ (@)

where f; is a positive constant and Vi"(zi) =
V*(z;) is a continuous scalar function.
The HIB equation for z;-subsystem is

ov* oV (z
H; (Zi,af, azl_ ) =Zz‘2+a;k2+(2ﬁi2i+ (;Z‘l))
i . i

x (fi() + af (zi) — ai—1(zi-1)) = 0.
(40)

Vi (zi) =

—Biz2(t) +

Then, the optimal controller a¥(z;) can be get by solving the
equation 0H; /oo =0

18V"(z)
o (@) = —pizi(1) - ’ (41)
0zi
For any z; € Qg, 6Vi"(zz‘)/6zi can be approximated
by NN as
oVO(zi
% = WiTS;(zi) +eilz) (42)
1

where W7 e R™ is the ideal weight, Si(z;) € R™ is the
basis function vector, and ¢;(z;) € R is the approximation
error, which is bounded by a constant d;, i.e., |&;(z;)| < ;.

The gradient term 6V;*(z;)/0z; and the optimal controller
a}(z;) can be redescribed as

6‘/(;71(1,) = 2Bizi(t) + WiT S;(z) + ei(z) (43)
l 1
o; (zi) = —Pizi(t) — E(W,-*TSi (zi) +€i(zi). (44)

Substituting (42) and (44) into (40), the following one can be
obtained:

Hi(zi, 0], W) = —(BF = D22(0) + 2Bizi (O (fi (%) — @i1)
+ W Si (@) (fi i) — aim1 — Bizi (1))

1
- ZWi*T Si (@) ST ()W +e (1) =0 (45)

where € (1) = & (zi) (fi (Xi) — di—1 +a}) + (1/4)e?(zi), which
is bounded because all terms are bounded.

The optimal controller (41) is unavailable, because the ideal
weight Wi* is unknown, and in order to obtain the valid
controller, the actor—critic RL is used, where the critic and
actor NNs are designed as

Vi) _ 2B:zi (1) + ﬁ = 2Biz:(t) + WE(1)S; (zi)
0z; 0zi
bi(zi) = —fizi(t) — —Wfi (1)Si (z:) (46)

where \71* (z;) and ‘7i” (z;) are the estimations of V;*(z;) and
V£ (z;), respectively; WZ (1) € R™ and WZ (1) € R™i are the
critic and actor NN weights, respectively.
Remark 3 The boundedness of a&;_1i,
is proven in the following. )
Based on (39) and (46), the time derivative a;_1,
i =2,...,n, can be expressed as

i = 1,...,n,

aio1(t) = —Pic1 (fic1 Fim1) + xi(t) — Gi—a2(zi—2))

1,z
Z(WaT(, 1)Sz 1(zi— l)+ (, 1)St 1(zi- l))
(47)
Since these terms fi_1(x;—1) + x;(¢), i = 1,...,n, are
Lipschitz continuous, they are bounded for z; € €.

Starting from a; = —gi1(fi(x1) + x20) — ¥) — (1/2)

(WL (®)S1(z1) + WL (#)S1(z1)) that is bounded, it can be

successively proved that &i_l, i =3,...,n, are bounded by

using (47). ]
The approximated HJB equation for z;-subsystem is

Hi(zia &ia WCi)

2
= Ziz(t) + ( ﬁzzz (t) _WT(I)S (Z;))

+ (2Bizi(0) + WCTi (1)Si(zi) (—[)’iZi(I) — %WGT, ()Si(zi)

+ i) — i (Zi—l)) .

The Bellman residual error is yielded as (1) =
H;(zi,ai, Wei). Define the positive definite function as
Ei(t) = (1/2)ei2(t). The critic NN weight updating law is
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designed by using gradient descent algorithm

; Vei Oe;(t)
Wei = - i 2
=15 OF + O 0
= o L1?

X (wi (OWei (1) — (7 = 1)z (1)
+2ﬂiZi(fi(ii)_&i—l)"‘%wa];si(Zi)SiT(Zi)Wai
(48)

where y.; > 0 is the learnlng rate and w; (t) = Si(z;) (fi (x;) —
dim1 — Pizi(t) — (1 /2)WE(1)Si (z:)) € R™.

The actor NN weight law is designed based on the stability
analysis

vai Si @) ST (2i) Wai (1)
Si (20)ST (zi) Wai (1) o] (8) Wei (1)
(49)

R 1
Wai(t) = ESi(Zi)Zi(t) -

Vi
R A —
4(Jlewi[|> 4 1)

where y,; > 0 is the learning rate.

Using the error variable z;11 (1) = x;+1(t)—a;(z;), the error
dynamic (39) can be rewritten as

2i() = fi(xi () + ziv1(t) + 0 (zi) — @i—1(zi-1)-

Consider the following Lyapunov function candidate for
Z;-subsystem:

(50)

i—1

1 . -

Li(t) = ZLk(t) + z + Wi (0) Wai (1) + 5 Wi (0 Wei (1)

where Wi (1) = Wi (1) — W and W, () = Wi (1) —
the critic and actor NN estimation errors.

Based on (48), (49), and (50), the time derivative of L; ()

is

W are

Li({) 1
= ZLk(l) + Zi(fi (x) + Zitl — &i—l + &t)
=1 1
K (I)(ES" (@) (1) + 7aiS: 21)S] (@i) Wai (1)
T 62T ) Wi (DT (1) W
4(||w ||2_|_1)Sz (zi)S; (zi)Wai (1) w; (t)Wu(l))
W o (Do

x (a)i Wei (t) — (B2 — 1)z (1)

+2Bizi () (fi (&) — Gi—1(zi-1)) + %Wi (1)S;i (zi)

x S} (zi>Wai(r)).

Similar to step 1, the following result can be derived:
i1

Lit) < D L) + 224,

k=1

— (B —3)2?
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x WE(1)Si (z1)ST (zi) Wai (1)

1 Y 1
TP F1 (7 - WS Es] G )
i

2
WE ()i (D! () Wei (1) — (y;“ %)Wi-(t)

XSt(Zz)S (Zt)Wal(t)+ f (xz)+ OCl 1(Zt 1)
Vat+1
+ 2

(W7 8i(20))” + %ef(t). (51)
Using results of the first i — 1 steps, the inequality (51) is
rewritten as
i1
L) = X (~ar 1&OIP + ) + 221 (0) = & A 0&G ()
k=1

vai  Va v .
+Ci(t) — (7 — 7) WL ()i () ST (zi) Wai (1)

where & (¢), Ai(t), and C;(r) are shown at the top of the next
page.
Based on Assumption 1, the matrix A;(f) can be positive

definite by choosing the parameters f;, y.i, and y,; satisfying
the following conditions:

i
16

1
> —sup{ Amax{ W7 Si(z0)S] (z))Wi'}}.
16t20

Bi >4, yai > pi+ =wiTwr

Vei (52)

Then, there is the following inequality:

Li(t) < D (=ax &I + ) + 274, ()

k=1

where a = inf;>0{Amin{Ax(1)}} and cx = sup,-o{Cr(1)}.
Step n: In the final step of the backstepping control,
the actual controller u will be derived. Defining the tracking
error variable for the nth step as z,(t) = x, () — an—1(zn—1),
based on the system dynamic (8), the error dynamic is

2u(0) = fuGn (1)) + tt — Gp—1 (zn1)-

The optimal value function is defined as

Vi (zn) = uEI‘}I’l(igz,,) (/t ra(2i(s), u(zn))dS)

_ / 7 raan(s), 6 (e))ds

(53)

where r;,(z,, u) = zﬁ () 4+ u? is the cost function, u* is the
optimal actual control, and Q, is a compact set containing
origin. Rewrite the optimal value function as

Vi(2n) = Bz (1) + V2 (2n)

where f, is a positive constant and V,(z,) =
V,*(z,) is a continuous scalar function.
The HIB equation for the subsystem is

ov* ove
H, (zn, u*, —2 ) = 22(t) +u*? + (2ﬁnzn(t) + aZ" )

aZn n
X (fn(Xn)

(54)
_ﬂnZZ (t) +

- é‘\‘n—l(zn—l) + u*) =0.
(55)
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&) = [z, WEo, wEn]"
Bi—4 0 0
o (e 7i_ Ly (O (OW* ) Si(z0)ST (z1) 0
Ai(t) = 2 2 g wnDen W Ritas
1 vei Lo ur T * T
0 0 TPHOTEES] (7—§W 8;(2)ST z)W; )w,(t)a) )
ai 1 I ci
Ci0) = L (WS @)+~ f (@) + 562, + L

The optimal control u*(z,) can be got by solving 6 H,, /ou*=0

10V (zn)

_/ann(t) - 5 oz

For any z, € Q. the uncertain term 0V (z,(t))/0z, is

approximated as
0 Vno (Zn)
0Zn

where W) € R™ is the ideal weight, S,(z,) € R™ is the
basis function vector, ¢,(z,) € R is the approximation error
satisfying |e,(z,)| < dp, and J, is a positive constant.

The gradient term 6V,*(z,)/0z, and the optimal controller
u*(z,) can be redescribed as

u*(zn) = (56)

= W:Tsn (zn) + &nlzn)

(57)

a‘/;;zz(Zn) = Z,ann(t) + W:TSn(Zn) +en(zn) (58)
u*(zn) = —Puza(t) — %(W:TS,,(Z”) + (C»'n)- (59)

Substituting (57) and (59) into (55), the following one can
be obtained:

Hy (zny u*, W) = —(B2=1)22(1) + 2uzn () (f(Fn) —Gn—1)

+ WSy (@) (fuFn) — @net — Paza())
1
—ZwﬁT&Qmﬁ[&wWﬁ%ﬂmU)=0
where €, (1) = &,(2n) (fu (Fn)—an—1+u*)+(1/4)e2(2,), which
is a bounded term.

The following critic and actor NNs are designed to imple-
ment the RL iteration for the optimized control:

oVi(z ovVO(z .
M = 2ﬁnzn + - (@) = 2ﬂnzn(t) + WcTn(t)Sn(Zn)
aZn azn

U = —Puzn(t) — EWL(r)Si (zn) (60)

where Vn*(zn) and V”(zn) are the estimations of V*(z,) and
V?(zn), respectively; W, (t) € R™ and W, (t) € R™ are
the critic and actor NN welghts respectlvely

The approximated HJB equation is

Hy(zn, u, ch)
2
= Z;% + (_ﬁnzn - %WL(I)Sn (Zn))
+ (2Buzn + Wi, (S )

x (f,,()?,,) — Gt — Brzn(t) — %WL(I)Sn(Zn)) .

The Bellman residual error is e, (t) = H, (24, u, WC,,). Defin-
ing the positive definite function as E,(r) = (1 /2)e,%(t),
the following critic NN weight updating law is derived by
using the gradient descent algorithm:

Ven en (1) Oen (1)
Tlon@P+ 1 OWen (1)
- Ven

o2 + 1

« (w,{ Wen (6) = (B — DZ2(0)

‘/i/cn(t) =

Wn

28020 (D) () — 1) + %WL@)SH ()

X Sy{ (Zn)Wan (t)) (61)

where y., > 0 are the learning rate agd w,(t) =
Sn (Zn)(fn (Xn) — Gn—1 (Zn-1) — ﬂnzn(t) - (I/Z)WL(I)Sn (Zn))

The actor weight updating law based on the stability analy-
sis is given in the following:

Vi/an (t) = lSn (Zn)zn (t) - VanSn(Zn)SZ (Zn)Wan(t)

YVen
4(|I o (D)?+ 1)
where y,, > 0 are the learning rate.

Consider the overall Lyapunov function candidate for the
final step as

Sy (Zn)S (Zn)Wanw ch (62)

n—1

L(t)—ZLk(tH >2n +1 (t)Wan(t)Jr1 W () Wen ()

where W, ) = ch (t)— W) and Woan ) = Wan (t)— Wy are
the critic and actor NN estimation errors, respectively.

Similar to the first n — 1 steps, the time derivative of L(z)
along (53), (61) and (62) satisfies

n—1

L(t) < D L)) = (Ba = 3)7;(0)

k=1

X WT (I)S (Zn)ST(Zn)Wan(t)
1 Vei 1

- ___W*TS ST W*
||wn||2+1(2 WS @S] oW
Yan chn

X W;(t)wnw,{ﬁ’cn(f) - (7 - 7) WL(I)
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xSy (Zn)S (Zn)Wan(t) + = f (xn) +l -1

Van2+ 1 (

[\.)

+ W S, (zn))? %”e,%(t). (63)

By using the results of previous steps, the inequality (63)
is rewritten as

n—1
L) = X (~a IGOIP + ) = & O A0E D + Ca )
k=1
Yan Y 2 & &
- (7 - %) Wa];,(t)sn (Zn)S;{(Zn)Wan(t)
where &, (1), A,(t), and C,(¢) are shown at the bottom of the
this page.

Based on the PE assumption, the matrix A, (¢) can be made
positive definite by satisfying the following conditions:

(n
16

sup{max (W, S, )y (e W, 1}
>

B >4 yan > 2+ =wTwr

1
Yen > E (64)

Let a, = inf{Amin{An(#)}} and ¢, = sup{C,(¢)}, the fol-
120 >0

lowing result can be obtained:

L) < D (—arll& @ + c). (65)

k=1

The main results are summarized by the following theorem.

Theorem 1 Consider the strict-feedback system (8) with
bounded initial states and reference signal. The control laws
choose (60) as the actual control and (19) and (46) as
the virtual controls; the weight updating laws are provided
by (23), (48), and (61) for critic NNs and (24), (49), and (62)
for actor NNs with bounded initial values. If Assumption 1
is held and the design parameters satisfy the conditions (38),
(52), and (64), then the optimized high system control scheme
can guarantee the following.

1) The error signals z; (1), Wci (1), and Wai(t) are SGUUB.

2) The desired tracking performance can be obtained.

Proof: 1) The inequality (65) can become as

L(t) < —aL(t)+¢

n
,ap} and ¢ = D ¢k.

k=1
According to Lemma 1, there is the following fact that:

where a = min{ay, az, ...

L(1) < e~ “L(0) + 2(1 _ ey,
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From the above-mentioned inequality, it can be concluded
that all error signals z; (1), Wei (1), and Wa,-(t), i=1,...,n,
are SGUUB.

2) Let L,(t) = (1/2)>}_, z;(t), the time derivative of
L.(t) along (26), (50), and (53) is

L.(t) = z1(0)(fi(F1) — ¥, (1) + 22(t) + @1 (21))

n—1

+ D> Wi @) + 241 () = bim1 + 8i(20)

k=2
+ 20 (O (fa G (1)) — &n—1(zn—1) + w0).
Substituting (19), (46), and (60) into (66) has
L.(t) = —p123() + 21 fi(@1) — 21()r + 21 (1) 22(0)

1 “
- 5m(t)WL (1)S1(z1)

(66)

n—1
+> ( — Bz} (6) +2i(0) fi (%) — 2i(D)di-1 (zi-1)
k=2

+ 2z (f)Zz+1 (t) - lzz WT (I)St (Zl))

lznw " (1)Su (2n).
67)

2 _ X
- /B”Zn + ann(xn) — ZnOn—1 —

Applying Young’s inequality ab < (a®/2) + (b*/2) to (67),
the following result can be yielded:

n
Lo(t) < =(B1 =3 () = D_(Bi =z} () + D(1) (68)
k=2
where D(1) = (1/2)32(0) + (1/2) 3563, + (1/2)
Yo R + (1/8) 5 L (W (1) Sk (zk))?. Because it has
been proven that Wf” (t),i =1,...,n, are SGUUB by part 1,
the term > }_ (WZ (1) Sk (Zk))2 is bounded. Since all terms
of D(t) are bounded, there exists a constant p such that
|D(t)] < p. Thus, the following result can be held:

Lz(t) <—=BL(1)+p
where f = min{f; — 3,52 — 4, ..., B — 4}. Based on the
above-obtained result, applying Lemma 1 has

L.(t) < e P L,(0) + %(1 Y

It implies that the tracking errors can arrive to the desired
accuracy by making £ large enough, as a result that the desired
control performance can be obtained.

&) = [za(0), Wi, (1), WS, 01"
/Bn_4 0 0

0 (Tt Lyere, orwr) s, Gost 0

Au(t) = 2 2 3y W@y Wy n(Zn) n Zn)
; yﬂ_i *T T * T
’ ’ lon P +1 ( 2 3 S @)W )wn(”w Q
1 an 1 * cn

Cult) = 372G + 582+ 22 (Wi s,0)” + 1220
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Output y(t)

Tracking error z( )
o

Fig. 1. Tracking performance.

IV. SIMULATION EXAMPLE

In order to further demonstrate the effectiveness of the
proposed control technique, a numerical simulation is carried
out for a second-order strict-feedback system.

Consider the following nonlinear system:

%1(1) = —sin®(2x1) + x2(7)

%2(1) = (1 — (2 + sin(x1) cos(x2))?) + u (69)

where x(¢), x2(t) € R are the system states and u € R is the
control input. The desired reference signal is y, = 4sin(3¢/4)
shown in Fig. 1.

Step 1: From the system equation (69), the tracking
error dynamic for the first backstepping step is z;(t) =
—sin?(2x1) + x2(t) — 3cos(3t/4). The initial position is
x1(0) = 2. The virtual controller is constructed based on (19),
and the design parameter is f; = 12.

For the step, the critic and actor NNs contain 36 nodes
with centers u; evenly spaced in the range [—6, 6], and the
widths of the Gaussian function are ¢; = 1, i = 1,...,36.
The updating laws for critic and actor NNs are given based
on (23) and (24), respectively, of which the learning rates
are yo; = 0.2 and y,; = 3 and the initial conditions are
W,1(0) = [0.02, ...,0.02]" € R3**! and W,;(0)=[0.01, ...,
0.0117 € R3®*1,

Step 2: This is the final backtepping step, and the actual
controller is designed in the step. The error dynamic for the
step is 22(r) = (1 — (2 + sin(x1) cos(x2))?) — a1(t) + u.
The initial position is x3(0) = —2. The actual controller
is constructed based on (60), and the design parameter is
[r = 14

For the final step, the critic and actor NNs are constructed
to contain 72 nodes with centers x; evenly spaced in the range
[—6, 6], and the widths of the Gaussian function are ¢; = 1,
i = 1,...,72. The updating laws are obtained from (61)
and (62), respectively. Their learning rates are y.» = 0.3 and
yqo2 = 4, and initial conditions are W (0) = [0.02,...,
0.0217 € R7**! and W,»(0) = [0.01, ...,0.01]7 € R7>*1.

Figs. 1-5 show the simulation results. Fig. 1 shows the
tracking performance. Tracking errors zj(f) and zp(¢) are
displayed in Fig. 2, which converge to zero. The cost functions
r1(z1, o1) and ry(z2, u) are presented in Fig. 3. The boundness
of critic and actor weight vectors is shown in Figs. 4 and 5.
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Fig. 2. Tracking errors for the first and second steps.
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Fig. 3. The cost functions for the first and second steps.
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Fig. 4. Critic and actor NN weight norms for the first step.
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o . . . . . . . . .
0 2 4 6 8 10 12 14 16 18 20
Actor NN weight for the 2nd step
Fig. 5. Critic and actor NN weight norms for the second step.

Figs. 1-5 further demonstrate that the proposed control can
guarantee that the control objective is achieved.

In order to demonstrate the optimizing performance of
the proposed control method, a comparison with the pub-
lished control approach proposed in [29] is carried out.
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— — — Reference signal
—— System output
,

Output y(t)
(=}

0 2 4 6 8 10 12 14 16 18 20
Tracking performance of the proposed method

— — — Reference signal
—— System output

\

Output y(t)

0 2 4 6 8 10 12 14 16 18 20
Tracking performance of the method of reference [29]

Fig. 6. Two tracking performances.
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Total cost function r, +r, of the proposed method
300
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100
0 . . . .
0 2 4 6 8 10 12 14 16 18 20
Total cost function L, of the method of reference [29]
Fig. 7. Two total cost functions.

The comparative results are shown in Figs. 6 and 7. Fig. 6
shows that two tracking performances are the same, and Fig. 7
shows the cost functions of two control schemes. From Figs. 6
and 7, it can be directly concluded that, with the same tracking
performances, the proposed control scheme is low cost.

V. CONCLUSION

This paper proposes a new control technique named OB
for strict-feedback systems, which melts the optimization into
backstepping control. Since backstepping is the most general
and effective control technique for strict-feedback systems,
it is very significant and advantageous to consider optimization
to the control. In order to achieve the objective, the actor—
critic-based RL algorithm is used, in which the actor NN is
utilized to carry out the control behavior; the critic NN is
utilized to evaluate the optimizing performance and return the
evaluation to actor training. Since all the virtual controls and
the actual control are designed to be the optimized solutions
of corresponding subsystems, the overall control is optimized.
Based on the Lyapunov analysis, it is proven that the proposed
scheme can achieve the control objective. Simulation results
show the effectiveness of the proposed control approach.
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Formation Control With Obstacle Avoidance for
a Class of Stochastic Multiagent Systems

Guoxing Wen ', C. L. Philip Chen

Abstract—This paper addresses formation control with
obstacle avoidance problem for a class of second-order
stochastic nonlinear multiagent systems under directed
topology. Different with deterministic multiagent systems,
stochastic cases are more practical and challenging be-
cause the exogenous disturbances depicted by the Wiener
process are considered. In order to achieve control objec-
tive, both the leader-follower formation approach and the ar-
tificial potential field (APF) method are combined together,
where the artificial potential is utilized to solve obstacle
avoidance problem. For obtaining good system robustness
to the undesired side effects of the artificial potential, H,
analysis is implemented. Based on the Lyapunov stability
theory, it is proven that control objective can be achieved,
of which obstacle avoidance is proven by finding an energy
function satisfying that its time derivative is positive. Fi-
nally, a numerical simulation is carried out to further demon-
strate the effectiveness of the proposed formation schemes.

Index Terms—Directed topology, formation control,
obstacle avoidance, stochastic multiagent system, H_
analysis.

[. INTRODUCTION

N RECENT decades, cooperations or coordinations of multi-
I agent systems have received the increasing attention because
the research is meeting military and civilian requirements. Their
applications can be found in various fields, such as coopera-
tive control of satellite clusters, formation control of unmanned
aerial vehicles, distributed optimization of multiple robotic sys-
tems, and scheduling of automated highway systems [1]-[4].
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In the multiagent community, formation control is one of the
most fundamental and important research topics, which requires
a group of autonomous agents to keep a predefined formation
pattern moving in the desired trajectory with velocity. In some
sense, it can also be viewed as all autonomous agents to finish
a common task by collaboration. Therefore, multiagent forma-
tions can be widely applied in the areas of aerospace, industry,
entertainment, and other fields. For example, satellite formation
can greatly reduce operating costs, improve system stability and
reliability, and exceed the ability of multiple single-spacecrafts.
In past decades, many formation strategies, such as leader-
follower [5], virtual structure [6], and behavior-based [7], have
been well developed and applied, where the leader-follower ap-
proach is the most popular because of its simplicity and stability.

However, most existing formation control methods are only
focused on deterministic multiagent systems, which do not con-
sider any stochastic disturbances. Since information communi-
cation in multiagent system control is often interfered by vari-
ous kinds of stochastic noises, such as thermal noise, channel
fading, and quantization effect during encoding and decoding,
the stochastic dynamic model can more precisely to describe
the practical multiagent engineering than the deterministic case.
Although many control techniques developed for deterministic
systems have been successfully extended to stochastic dynamic
systems, such as backstepping, adaptive observer, reinforcement
learning, and nonlinear optimality [8]-[12], these techniques
cannot be directly applied to the multiagent control owing to the
state coupling problem. Recently, several consensus schemes of
stochastic multiagent systems have been reported and received
widespread concern [13], [14]. Nevertheless, in comparison with
consensus control, formation control is challenging and interest-
ing because the predefined formation configuration is required
to maintain.

In the formation control community, the obstacle avoidance
problem is still a big challenge because of uncontrollability and
complexity [15]-[17]. To solve the problem, artificial potential
field (APF) methods are usually considered [18]-[22]. By treat-
ing every obstacle as the high-potential point, a repulsive force
will be triggered to compel the agent system to bypass the ob-
stacles when any agent moves into a predefined range around
obstacles. Furthermore, in order to achieve the ideal control per-
formance, the robustness analysis is necessary to be performed
for disturbance environments. Actually, the artificial potential
forces will cause undesired side effects after finishing the tasks
of obstacle avoidance, so it can be treated as exogenous dis-
turbances. Generally, H., control strategy is first considered

0278-0046 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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for obtaining the desired system robustness when exogenous
disturbances enter a system [23]-[26]. However, most exist-
ing formation schemes concerning obstacle avoidance are only
focused on the deterministic multiagent systems [18]-[22]. In
addition, the existing robust control schemes rarely address the
multiagent formation [23]-[26]. Furthermore, the H,, robust
control of stochastic multiagent formation is very difficult and
challenging whether control design or stability analysis because
Ito differentiation involves not only gradient but also Hessian
term (second-order partial derivative term).

Motivated by the above discussion, this paper addresses
formation control with obstacle avoidance problems for a class
of second order stochastic multiagent systems under directed
topologies. The main contributions can be listed as follows.

1) The obstacle avoidance problem of multiagent forma-
tion is solved by combining both the artificial potential
method and leader-follower formation approach together,
which is proven by a novel method.

2) The proposed formation control scheme is developed for
stochastic second-order multiagent systems with directed
interconnection topology, so it can be applied to a wide
class of practical multiagent engineering.

3) H..-technique-based robust control is extended to the
stochastic multiagent systems.

For convenience, the following notations are used throughout
this paper.

1) Rrepresents real number; R" denotes real n-dimensional
vector space; R"*™ is n x m-dimensional matrix space;
I, is n x n identity matrix.

2) ||| represents 2-norm; E denotes mathematical expecta-
tion; || ||, = (B ;" || - 12dt)7 .

3) T is the transposition symbol; V is the gradient operator;
® denotes Kronecker product.

[l. PRELIMINARIES
A. Stochastic System

Consider the following stochastic system:

dy(t) = (f (y) +7(t)) dt + g (y) dw(t) )]

where y(t) € R" is the state; 7(¢) is disturbance input; w(t) €
R" is an independent standard Wiener process; f : R" — R",
g : R" — R"*" are Lipschitz with f (0) = 0 and g (0) = 0.

Definition 1 [27]: For a positive definite, radially un-
bounded, twice continuously differentiable function V' (y) as-
sociated with stochastic systems (1), the infinitesimal generator
Z is defined as follows:

_ov il

o o+l el @

Definition 2 [28]: The equilibrium state y = 0 of stochastic
system (1) is said to be exponentially mean square stable if there
exist k1 and ko such that

B {ly®)I] <k ly(©)) e, 3

Definition 3 [29]: The H,, problem for stochastic system
(1) is said to be solved if the following conditions are satisfied:

Z V()

1) the closed-loop system (1) is exponentially mean-square
stable when 7(t) = 0;

2) the following inequality is satisfied under zero initial
values:

ly@IIz,, <vIrOIL,, €y

where v > 0 is the noise attenuation level;, 7(t) €
Lg, ([Oa OO) ;Rmn)'
Lemma 1 [9]: Suppose there exist a C? positive function
V(t) € R* — R, two constants ¢, ¢o, and class K, functions
v1(+), vo(+) such that

v ([lyll) < V(y) < wva (llyll)
LV () <—aV(y) +e. 5)

Then, there is a unique solution of (1) for any initial state y(0) €
R"™ almost surely, and the following condition satisfies:

e 2 (6)
(&1

EV (y(1)] <e 'V (y(0) + (1 -
Remark 1: The basic idea of H, control is that the influence
of disturbance input 7(¢) on the system output y(¢) is attenuated
to desired level. Obviously, if zero initial state is satisfied, the
Iy,
I,
implies that the gain between y(¢) and 7(¢) must be equal or
less than the prescribed level . Therefore, system output can be
robust to disturbances by satisfying the H, control performance

(COF

H, performance (4) can be rewritten as < =, which

B. Algebraic Graph Theory

LetG = (V, ¢, A) denote a directed graph containing n nodes,
where V = {vi,v2,...,0,},e CV x V,and A = [a;;] are the
node set, edge set, and weighted adjacency matrix, respectively.
The interconnection topology of multiagent system can be de-
picted by a graph G, in which every agent is represented by
a node. Let ¢;; = (vj,v;) be a directed edge, when ¢;; € ¢
if and only if there is the information flowing from agent j
to agent 7. A directed network G is said to be strongly con-
nected if any two distinct nodes can be connected by a se-
quence of directed edges. The agent j is said to be a neighbor
of agent i if €;; € ¢, and all neighbors of agent 7 are denoted
by the set N; = {v; € V : ¢;; € ¢,j # i}. The adjacency ma-
trix A = [a;;] is used for describing the communication weights
among agents, where a;; > 0 < ¢;; € ¢ and otherwise a;; = 0
and a;; = 0. Laplacian matrix of the graph G is defined as

L=D-A 7)

where D = diag{d;,ds,...,d,}, d; = 27:1 aij. Let B=
diag{b;,bs,...,b,}T denote the communication weights be-
tween agents and leader. It is assumed that at least one agent
connects with leader, i.e., by + by +---+b, > 0.

C. Atrtificial Potentials and Virtual Forces

In order to avoid collision with the obstacles, APF methods
are employed by taking the obstacles as high potential points,
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which produce the repulsive forces to expel all agents away from
them.

Define the relative position vector z;i (¢) between agent ¢ and
obstacle oy, as

zik(t) =z (t) —op, k=1,...,q (8)

where x; is the position state of agent ¢. Then, the repulsive
potential function is defined as follows.

Definition 4 [30]: The  repulsive
Pi (J|zix (t)]]) is a nonnegative
such that

1) Py (||zir]]) — +oo when ||z || — di., where d, is the
minimal separation distance between agents and obstacle
k.

2) P (||zix]|) attains its minimum when ||z;1. || > dj., where
dj. is the distance threshold simulating the repulsion ef-
fect, which satisfies dj, > dj..

The repulsive force is derived from negative gradient of the
potential function Py, (||zx]|) as

pir(t) = =V B ([ziel)) = =Va, B (ziel)) - 9)

By employing the APF method, the possible collisions be-
tween agents and obstacles can be avoided. When all agents
move away from the obstacles, i.e., {x1,...,2, } ¢ Q) where
Q. = {zill|zi|| < di. } is a compact set, the repulsive forces
arrive the minimum and satisfy p;; (¢t) € L9 [0, T]. Although the
repulsive forces attenuate to the minimum in the situation, they
still produce undesired side effects to the control behaviors. In
order to ensure formation behaviors to be robust to the undesired
side effect, [, analysis is implemented by considering them as
the disturbance inputs. When agent i, € {1,...,n}, is moving
toward obstacle oy, k € {1,...,q}, ie., x; € Q, the repulsive
force p;i (t) will play a role to drive the agent away from the
obstacle.

function
function

potential
differentiable

D. Supporting Lemmas

Lemma 2 [31]: A directed graph G is strongly connected if
and only if its Laplacian matrix L is irreducible.
Lemma 3 [32]: If the matrix L = [l;;] € R"™" satisfy
l)lijgO,i;&j,l”:—Z;’f:llu, =1,2,...,
2) L isirreducible.
Then , the following conclusions hold.
1) Real parts of the eigenvalues excepting for the eigenvalue
0 are positive.
2) [1,1,...,1]"
eigenvalue 0.
3) if § = [01,09,. .., 571]T is a left eigenvector correspond-
ing to the eigenvalue O, then its normalization can be
chosen so that §; > Oforalli =1,2,...,n
Lemma 4 [33]: Let L = [l;;] € R"*™ be an irreducible ma-
trix such thatl;; = l;; < Ofori # j,andl;; = — Z}"Zl l;;, then
all eigenvalues of the matrix

l11 + bl e ll’n,

is a right eigenvector corresponding to the

L=L+B= : :
lnl e lnn + bn,

are positive, where b; > 0 satisfies by + by + -+ + b, > 0.

Lemma 5 (Schur Complement [34]): A linear matrix in-
equality [;’5(&)) ;E?)] > 0, where M(z) = MT(x), N(z) =
NT (z), is equivalent to either of the following conditions:

1) M(x) >0, N(z) — PT ()M~ (z)P(x) > 0;

2) N(z) >0, M(z) — P(x)N~'(z)PT (z) > 0.

Lemma 6: Let V(t) € R be a positive definite continuous
function, if Z(V (t)) > SV (¢) (or Z(V (t)) < BV (1)) is satis-
fied, then the following inequality holds:

E(V(t) > E(V (1))
(or E(V(t)) < e’"TE(V (t)))) (10)

where t > t(, 0 is a positive constant.
Proof: From £ (V (t)) > BV (t) (or Z (V(t)) < BV (1)),

the following one holds:

ﬂ%gD:E@mm>ﬂEW)
d(EWV)) _
<m(ﬁE@z%v»f§ﬁE(V)>~
Further, having
d(E (V)) d(E (V))
50 (o)

Integrating the above inequality from ¢ to ¢y, there is the follow-
ing one:

In(E (V))fl, > B(t —to) (or Wn(E V), < B(t —t0)).
The inequality (10) can be obtained by calculating exponent on
both sides of the above inequality. |

lll. MAIN RESULTS

A. Problem Formulation and Control Objective

Consider the second-order multiagent systems molded by the
following stochastic differential equations:

da;(t) = vi(t)dt
dvi(t) = (f (x5, v;) +w;) dt + ¢; (2, v;) dw; (t)
=1,. (11)
where z; (t) = [z;1(t), ..., 2y, (1)]T € R™ andv; (t) = [v (1),
< im (8)]T € R™ are the position and velocity states, respec-

tively; u; = [u1, ..., uim]? € R™ is the control input; f(-) €
R™ is the continuously differentiable vector-valued function
with f(0) = 0,,; ¢;(x;,v;) € R are the nonzero smooth func-
tions; w; () is the independent m-dimensional standard Wiener
process defined on a complete probability space.

Remark 2: For the multiagent dynamic (11), the standard
Wiener process w;(t) is used to represent stochastic distur-
bances. Since stochastic disturbances inherently exist in almost
all physical systems, such as the Gaussian white noise of a
communication channel, it is very necessary to research the
stochastic case of multiagent systems.
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The leader dynamics are described as

@ (t) = 'Ur(t)v 1'),»(1*/) = f (@, vr)

where z, (t) € R™ and v, (t) € R™ are the position and velocity
states, respectively.

Assumption 1 [35]: The continuously differentiable vector-
valued function f (-) is Lipschitz, i.e., there exist nonnegative
constants py;, po; such that

If (wi,vi) —

12)

f@rv)|l < puillze — 2 || + pai [Jvi — o |
i=1,....n (13)

Assumption 2 [36]: The smooth function ¢; (x;,v;), i =
1,...,n, in differential (11) satisfies the following condition:

&2 (i, vi) < Cui |2l + Cai |Joil?

where (;; and (»; are two positive constants.

Assumption 3 [37]: The reference signals ., (t) and v, (t)
are bounded by the constants €; and €3, i.e., ||z, || < €1, ||v. || <
€9.

Definition 5 (Mean Square Formation [13]): The stochastic
multiagent system (11) is said to reach the mean square for-
mation if the following conditions are held for bounded initial
condition:

(14)

Jim B (|l () =, (6) = mill”) =

lim B (Jloi(t) = 0. (8)]) =0,i=1,....n (15)
where 7; = [mi1, ... ,nim]T is a constant vector to denote the
predefined relative position between agent ¢ and reference (12).
In this paper, the control objective is to design a H, forma-
tion scheme such that the multiagent system (11) satisfies the
following conditions:
1) keep the predefined formation pattern in mean square;
2) follow the desired trajectory with velocity in mean square;
3) solve the obstacle avoidance problem in mean square.
In order to achieve the control objective, the error variables
between the agents and leader are defined as

Cxi = Tj (t) — Ty (t) — i

evi =vi(t) — v (t),i=1,...,n. (16)

From (11) and (12), the error dynamics can be derived as
deyi (1) = evs (1)dt, dev; (t) = ( Filt) + uZ') dt
+¢i (xi,vi)dw,;,i = 1,...,71

where fz(t) =f (Jﬂi,’ij) —f (a:r,,,v,,).

The (17) is rewritten to the compact form as

wo=(([3z ot Jom)o )

N |:Onm:|>dt+ (|:0n><n,:| ®Im)dw (18)
U P

a7)

where e(t) = [e; (1), e € y O er = [eqi (1), . ep, (D], e
:[egl(t)v"w 1)71()} f(t) [ ()7 7 g()]T U:[ {
..,uZ]TAI)—dlag{(i)l,...,gbn} andw:[wlT, Swlr.

B. Formation Control Protocol and Stability Analysis

Define the formation errors with respect to position and ve-
locity as

ézl(t) = Z aij (LC

ni —xj +1n;)+ b (xi —x — )

JEN;
em Z Ajj vl Uj (t)) + b (vi (t) — Ur (t))
JEN;
i=1.2. . ..n (19)

where a;; is the ith row and jth column element of adjacency
matrix A; b; is the connection weight between agent ¢ and leader.

Based on the error variables (16), the terms é,,;(t), é,;(t) can
be rewritten as

Coi (t) = Z A j (ezm' (t)

—egj(t)) + bieyi(t)

JEN;
6“ Z a’Lj el}t e’uj (t)) + bie’vi(t)
JEN;
1=1,2,....,n (20)
Design the formation control as
q
U; = —Qy 611 +em Z Ikpzk yi=1,2,...,n (21

where «; and ~y;; are positive design constants and specified
later; p; (¢) is the repulsion force defined by the (9).
Substituting (21) into (17), the following result can be ob-

tained:
de,; (t) = ey (t)dt
)+ filt )>

dem’(t) = <_0¢i (ém( + 617 Z %kpzk

k=1
+¢i(xi7vi)dwiai:17"'7n (22)
Transforming (22) to compact form as
0n><n _In Onm
de(t) = [ — ~ = I, t) —
e(t) < ( AL AL |® )e() {p(t)}
071,m (|:071,><n:| >
+ | - dt + @I, |dw (23)
0 ) P
e

where A = diag{a1,...,a,}, ;zz(t = [2F mkpin(z1x)7,

.}, i YorPuk (Zax )T1E, L = L + B, B = diag{by, ...,
by }.

Theorem 1: Consider the multiagent system (11) with ref-
erence signals (12) under strongly connected communication
graph G. The H, formation control (21) can achieve the control
objective for bounded initial condition if the design parameters



WEN et al.: FORMATION CONTROL WITH OBSTACLE AVOIDANCE FOR A CLASS OF STOCHASTIC MULTIAGENT SYSTEMS

5851

a;, Yik» and k satisfy the following conditions:
a; = k0, vk > 1,i=1,2,...,n,

o> maxi<;j<p{4p1i +3p2i + m(Ci + i)} +3
o )Lmin (@ + 2AB)

(24)

where § = [d1,d2,. .., 67L]T is the normalized left eigenvector
of Laplacian matrix L associated with eigenvalue 0, Ay, (O +
2AB) is the minimum eigenvalue of symmetrical matrix © +
2AB,0 = LTA + AL, A = diag{6;,02,...,6, }.

Remark 3: The proof is consisted of two parts, in which part
1 proves the formation performance and part 2 proves the ob-
stacle avoidance. When all agents are not in the area of possible
collision, i.e., {z1,..., 2, } ¢ U{_; Q. although the repulsive
force term »{ | virpir (%) attains to the minimum, they still
affect the formation behavior. In order to obtain the desired
robustness, H,, analysis is implemented by handling them as
disturbance inputs. When any agent enters the scope of pos-
sible collision, i.e., Vx; € UZZI Qy:, the repulsive force term
>4y Yikpik (zir) will dramatically increase to drive the agent
away from the obstacles.

Proof:

1) Part I1: Choose the following Lyapunov function candidate:

1
V(t) = 5¢" (1) (Q® In) et) (25)
where Q = [” OJ;QAB ) L ]. It should be mentioned that the ma-
trix () can be reexpressed as Q = [L /}+AL L, | by using these

facts a; = kd;,i =1,...,n,of condition (24)

According to Lemma 3, the left eigenvector 6 = [0y, da, . . .,
6,7 of Laplacian matrix L satisfies §; >0, i =1,2,...,n
From the fact ©1, = (LA + AL)1,= LTA1, + AL1,=
LT§ + AL1, = 0, it can be concluded that © is a zero row-sum
matrix. According to Lemmas 2 and 4, © + 2AB is a positive
definite matrix, thus, (0 + 2AB) — I,, > 0 can be held if &
satisfies the condition (24). Therefore, the matrix @ is positive
definite in accordance with Lemma 5.

The infinitesimal generator of V(¢) associating with error
dynamic (23) is

2o =—ro(([ il
) en)en-ro@on ([b]

. [(}(t)]) 5T <<[on£n]T . |:OT:£H D ®Im> e

Applying to matrix theory, there is the following result:

nxn
+Q[AL

Onxn *In TQ + Q n><n In
AL AL AL AL
2AB nxn
_ [ (©+ ) O x o
0n xn k(©+2AB) — 21,

Substituting (27) into (26) yields

LWV(1) = e (1)

2
w (@ + QAB) Onsxen
X (|: 07L><7l :‘i(@—}—QAB) _QI’IL:| ®Im> e(t)

-eo@st ([ ]-[7n])
+ %TT (a7 ). (28)
Using the following fact

roesn (] - [75]) =0 o]

— (el () +el (1) f(t) (29)

the inequality (28) can become

2V(1) =3¢ ()
s (6 JF QAB) 077, Xn
” ({ Onxn k(O +2AB) — 21,1} @ I) e(t)

— (1) {p(t)] + (el () + el () f(e) + % ; 2.

(30)

Based on Assumptions 1-3, the following results can be
obtained by using Cauchy—Buniakowsky—Schwarz inequality,

apbp)? < a? b2, and Young’s inequality,
k L ) k 1@ k 1% g q Yy
ab < s+ b

Z leaill 1I(f (i, vi) = F (v, o))

Z (lexill (prillexi | + p2illevi | + prillmi )

3p1i + pai P2i Plz
sz( el + 22 el + 22 1?31

) < Z llevill 1S f(@es o))

xlvvt) -

Z lewill (prillexill + p2illevill + prillmill))

- plz plz
<3 (Gt lleail + (pri 4 p20) lewl” + 52 Iml1*) - 32
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62 Givi) < 3 (G ol + ot i)
i=1

i=1

<23 (Gui lewsl” + G llewi I + 21 1 1
i=1

2 2

+ Goi o I + 2Gui i)

<237 (G lleail* + G llewil?) +2 3" (261}
i=1 i=1

+ i€ + 2Cui ||77i||2) .

Substituting the above inequalities into (30), the following one
can be yielded:

(33)

ZV0) -5 0

« H(®+2AB)_N1 Onxn
0y, 5n k(O +2AB) — N, — 21,
t)
® I, |et) — e’ (t p( }
Jetw - 2
+ Z (2mC1iE% + mCsz% + (2mGii + p1i) ||772||2> (34)
i=1
where
[4p11 + po1 +2mGiy - 0
Ny = : : :
L 0 e 4p1n + P2n + 2m<1n
[2p11 + 3p21 +2mo -+ 0
0 e 2p1n + 3p2n + 2m<2n

Adding and subtracting the term 1[p” (t),p” (t)][p” (),
p (t)]7 on the right-hand side of inequality (34), the following
inequality is yielded:

ZV0) -5 0

Onxn

. ([F(©+2AB) = Ny ~ 1,
k(0 +2AB) — N,

O’VL Xn

- 31’71:|

® Im)e(t) — (e(t)
38" (s [3]) 5105

+> (2mC1i€% +mGai€s + (2mCui + p1i) ||7771||2) N CRY
1=1

2

From the fact that (e + %[%;])T(e—k %[ggf;]) >0, (35) is
rewritten as

ZV0) < =3O (M L) elt) 16 (00 G6)

where

071 Xn

Onxn
K (9 -+ 2AB) - N2 - '?)In:|7

.....

£(t) = S 7

17

(Zpuc (Zlk)> REER) <ank (%k))
k=1 k=1

Since M is a positive definite matrix when designing x satis-
fies (24), the inequality (36) can be rewritten as

)\min (M)
< (V(t)) =" Amax (Q)

The repulsive force p(t) is handled as the disturbance input
in the case. If p(t) = 0, the inequality (37) can be rewritten as

V() +vE5(0Er). 3BT

Z V(@) <= V() + e (38)

Amin (M 7
el o= T emaid + meid +

(2m&ui + pua) i lI?).
From Lemma 1, the following one can be obtained:

where ¢ =

EV(H)] <e 'V (0) + (1 —e ") . (39)
By making the design parameter « large enough, the forma-
tion errors convergence to desired accuracy, which implies the
exponentially mean square stable to be achieved.

Since the multiagent systems get far from the obstacles, £(t)
belongs to L, ([0,00) ; R™™). By Integrating (36) from 0 to T’
and taking expectation, the following results can be obtained

E/Tg(x/(t))dt —EW(T) -V (0)

kmin M g !
< Q()E/O He(t)||2dt+vE/0 €)1 dt

= —Blle®I,, +7IEDIL,, (40)
where 6 = A"‘”Qw

Obviously, [le(t)|7, < FlIE@)I[7,, if V(0) =0, and thus,
the H,, control performancé (4) is satisfied.

2) Part 2: (In the part, collision avoidance is analyzed only
for agent ¢ and obstacle j. For the other cases, the proofs are
similar.)

Consider the following energy function:

(41)
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Using (11), the infinitesimal generator is

"g (‘/;] (t)) - ZTU? r (érz (t) + éﬂi (t)) + UiTJZL' (t)

L]

P
Z Yikpik (t)
k=1,k#j

Since the dwell time of agent 7 in the region €2; is finite,

these continuous terms z; (), v; (t), €, (t), &,: (t), fi(t), ¢; and

Zi’):l, kot j VikDik (t) are bounded. In addition, if the agent i is

closing the obstacle j, it implies that the agent is moving to-

ward gradient direction of the artificial potential P; (t), from the

definition of repulsive potential (Definition 2), there is the fact

that —v (t)p;; (t) = vf V., Pj(t) — oo if ||z — d;. There-

fore, the following inequality can be held if agent ¢ is closing to
obstacle j sufficiently:

Q;U;

le. @

—ijvi" pij(t) + 2

i Vi ;
— 0 (£)pij (t) > %ZT’ZU + %UT% = zvi = vi" fi(t)

+ aiviT (ém (t) - éu( + ¢2 Z Vlkpzk (43)
k=1,k#j
Applying the above fact to (42) yields
2 (Vij(#)) > i Vi (B). (44)
According to Lemma 6, the following result holds:
E(||zi; ()II") > 2¢75 7 B (Vi (o)) = E([vi(D)]]%). 45)

Thus, ||2;;(t)|| > d; can be guaranteed by designing the param-
eter -y;; appropriately, i.e., the collision between agent ¢ and
obstacle j can be avoided in mean square. |

IV. SIMULATION EXAMPLES

In order to demonstrate the effectiveness of the proposed
control strategy, a simulation example of stochastic multiagent
formation that is consisted of four agents is carried out. The
multiagent system is modeled as

5cos (0.1v;7) [lvi |
vilt) <[3sin(0.2vi2)]+u> +H:ci|| it
i=1,...,4. (46)
Their initial positions are x; (0) = [6,5], 22 (0) =[-5,6],

23 (0) =[5, —6], 24 (0) = [=6, —5).
The reference signal is modeled by the following dynamic:

. . 5cos (0.1x;1 (1))
i(t) = vi(t),vi(t) = : 47
Bi(8) = v (), &i(t) {3s1n(0.2xig(t)) “7)
The desired formation pattern is 1y = [4;4], 7o = [—4; 4],

13 = [4; —4], ny = [—4; —4]. Two obstacle points, 0 and 05 ,
aresetatt = 4.2and t = 14, respectively. The desired trajectory
and two obstacles are presented in Fig. 1.

Control objective: by applying the control protocol (21), steer-
ing the multiagent system (46) follows to the reference signals
(47), meanwhile maintains the predefined formation pattern and
avoids collision with obstacles.

20

le 1
’

5 Obstacle 2

Time
>

Fig. 1.

Reference trajectory with two obstacles.

The Laplacian matrix is

1.5 —-07 0 -0.8

I -06 14 -038 0
-08 0 1.7 =09

0 -07 —-09 1.6

The weight matrix between agents and leader is B =
diag {0,0.9,0,0.9}.
The potential functions are designed as

Pi (Jzall) = [l (2) ] ez -9
Py (|lzia]l) = Ilia(#)]] ez @)1=~

The corresponding repulsive forces derived from negative
gradient of the potential functions are

(48)

pir = =V, Pt (Jzanl)) = (200|201 || - 5) P ellr 1=
— Lz ||t el =5 )Zﬂ
pis = =V, P (|22 ) = (2(||22|| _ 4y 3elllall-)"

it el l- ) so(t),i=1,...,4.  (49)

The simulation results are shown in Figs. 2-5. Fig. 2 displays
the formation control without the assistance of artificial po-
tentials, where the controller is u; = —50 (&, (t) + €,;(t)), 1 =
1,2, 3, 4. Obviously, the obstacle avoidance cannot be achieved.
In order to solve the problem, the artificial potentials (49) are em-
ployed in accordance with the formation protocol (21). Then, the
controller is derived as u; = —50 (€,; + €,;) — 41.5p;1 (t) —
36p;2(t),7 = 1,2,3, 4, where 50, 41.5, and 36 are the controller
parameters «;, 7;1, and ;2 of (49), respectively. Fig. 3 shows
the control performance under the assistance of artificial poten-
tials. Obviously, the obstacle avoidance can be achieved. Fig. 4
shows the velocity error of multiagent formation, it implies
that all agents can follow the reference velocity after finishing
the obstacle avoidance. The comparison between both with and
without artificial potential is shown in Fig. 5. The simulation
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20

Time

Fig. 2.

15
10
5
0
20
0 20
0
. -20
xi2 -20 it

Obstacle avoidance cannot be achieved without the assistance

of artificial potentials.

20

Reference

— Reference

20
0 20
0
20
xi2 -20 xit

Fig. 3.

Obstacle avoidance is achieved under the assistance of artificial

potentials.

Fig. 4.

Time

1%

2
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> .

g 50 obstacle avoidance |

o
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>

é 0~ élv—# W
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g ~50 obstacle avoidance i

2 N

S -100 - ; :
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Time
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2 4 |:‘:|'
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b 0 5 10 15 20

Velocity errors in the obstacle environment.

Fig. 5. Comparison concerning obstacle avoidance performance be-
tween both with and without the assistance of artificial potential.

results further demonstrate that the proposed stochastic forma-
tion approach can well solve the obstacle avoidance problem.

V. CONCLUSION

The H-technique-based formation control scheme was pro-
posed for second-order stochastic multiagent systems under di-
rected topology. In order to solve the obstacle avoidance prob-
lem, APF methods were employed to drive all agents away from
obstacles. According to Lyapunov stability theory, it was proven
that the proposed formation approach can guarantee the multi-
agent systems will move along the desired route with velocity
while maintaining the predefined formation patterns and avoid-
ing collision with obstacles. Finally, a numerical simulation was
carried out to verify the effectiveness of the proposed approach.
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